Lag Variables in Air Pollution Modeling Based on Traffic Flow and Meteorological Factors †
Abstract
:1. Introduction
2. Data Source
3. Results and Discussion
Author Contributions
Conflicts of Interest
References
- Kazak, J.K.; Castro, D.G.; Swiader, M.; Szewranski, S. Decision support system in public transport planning for promoting urban adaptation to climate change. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 112007. [Google Scholar] [CrossRef]
- Kazak, J.; Chalfen, M.; Kamińska, J.A.; Szewrański, S.; Świąder, M. Geo-Dynamic Decision Support System for Urban Traffic Management. In Dynamics in GIScience. GIS Ostrava 2017. Lecture Notes in Geoinformation and Cartography; Ivan, I., Horak, J., Inspektor, T., Eds.; Springer: Cham, Switzerland, 2018; pp. 195–207. [Google Scholar] [CrossRef]
- Barratt, B.; Atkinson, R.; Ross, A.H.; Beevers, S.; Kelly, F.; Mudway, L.; Wilkinson, P. Investigation into the use of the CUSUM technique in identifying changes in mean air pollution levels following introduction for a traffic management scheme. Atmos. Environ. 2007, 41, 1784–1791. [Google Scholar] [CrossRef]
- Available online: https://wroclaw.stat.gov.pl/ (accessed on 23 January 2020).
- Chalfen, M.; Kamińska, J.A. Identification of parameters and verification of an urban traffic flow model. A case study in Wrocław. ITM Web Conf. 2018, 23, 00005. [Google Scholar] [CrossRef]
- Ping, S.J.; Harrison, R.M. Regression modelling of hourly NOx and NO2 concentration in urban air in London. Atmos. Environ. 1997, 31, 4081–4094. [Google Scholar] [CrossRef]
- Aldrin, M.; Haff, I.H. Generalized additive modelling of air pollution, traffic volume and meteorology. Atmos. Environ. 2005, 39, 2145–2155. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Gong, D.; Quan, W.; Zhao, X.; Ma, Z.; Kim, S.-J. Evolution of Surface O3 and PM2.5 concentrations and their relationships with meteorological conditions over the last decade in Beijing. Atmos. Environ. 2015, 108, 67–75. [Google Scholar] [CrossRef]
- Szyda, J.; Wierzbicki, H.; Stokłosa, A. Statistical modelling of changes in concentrations of atmospheric NO2 and SO2. Pol. J. Environ. Study 2009, 18, 1123–1129. [Google Scholar] [CrossRef]
- Singh, K.P.; Gupta, S.; Kumar, A.; Shukla, S.P. Linear and nonlinear modeling approaches for urban air quality prediction. Sci. Total Environ. 2012, 426, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Elangasinghe, M.A.; Singhal, N.; Dirks, K.N.; Salmond, J.A. Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis. Atmos. Pollut. Res. 2014, 5, 696–708. [Google Scholar] [CrossRef]
- Singh, K.P.; Gupta, S.; Rai, P. Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmos. Environ. 2013, 80, 426–437. [Google Scholar] [CrossRef]
- Araki, S.; Shima, M.; Yamamoto, K. Spatiotemporal land use random forest model for estimating metropolitan NO2 exposure in Japan. Sci. Total Environ. 2019, 634, 1269–1277. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhan, Y.; Wang, B.; Li, Z.; Qui, Y.; Zhang, K. Spatiotemporally mapping of the relationship between NO2 pollution and urbanization for a megacity in Southwest China during 2005–2016. Chemosphere 2019, 220, 155–162. [Google Scholar] [CrossRef]
- Kamińska, J.A. The use of random forests in modelling short-term air pollution effects based on traffic and meteorological conditions: A case study in Wrocław. J. Environ. Manag. 2018, 217C, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Kamińska, J.A. Residuals in the modelling of pollution concentration depending on meteorological conditions and traffic flow, employing decision trees. ITM Web Conf. 2018, 23, 00016. [Google Scholar] [CrossRef]
- Sayegh, A.; Tate, J.A.; Ropkins, K. Understanding how roadside concentrations of NOx are influenced by the background levels, traffic density, and meteorological conditions using Boosted Regression Trees. Atmos. Environ. 2016, 127, 163–175. [Google Scholar] [CrossRef]
- Kowalska, M.; Skrzypek, M.; Kowalski, M.; Cyrys, J.; Ewa, N.; Czech, E. The relationship between daily concentration of fine particulate matter in ambient air and exacerbation of respiratory diseases in silesian agglomeration, Poland. Int. J. Environ. Res. Public Health 2019, 16, 1131. [Google Scholar] [CrossRef] [PubMed]
- Vanos, J.K.; Cakmak, S.; Kalkstein, L.S.; Yagouti, A. Association of weather and air pollution interactions on daily mortality in 12 Canadian cities. Air Qual. Atmos. Health 2015, 8, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, F.; Kamínska, J.; Lucena-Sánchez, E.; Palma, J.; Sciavicco, G. Multi-Objective Evolutionary Optimization for Time Series Lag Regression. In Proceedings of the 6th International Conference on Time Series and Forecasting, Granada, Spain, 25–27 September 2019; pp. 373–384. [Google Scholar]
- Brunello, A.; Kamińska, J.; Marzano, E.; Montanari, A.; Sciavicco, G.; Turek, T. Assessing the Role of Temporal Information in Modelling Short-Term Air Pollution Effects Based on Traffic and Meteorological Conditions: A Case Study in Wrocław. In New Trends in Databases and Information Systems; Communications in Computer and Information Science; ADBIS 2019; Welzer, T., Eder, J., Podgorelec, V., Wrembel, R., Ivanovic, M., Gamper, J., Morzy, M., Tzouramanis, T., Darmont, J., Kamišalić Latifić, A., Eds.; Springer: Cham, Switzerland, 2019; p. 1064. [Google Scholar] [CrossRef]
Traffic Flow | Wind Speed | Air Temp. | Sunshine Duration | Relative Humidity | Air Pressure | |
---|---|---|---|---|---|---|
NO2 | 1 | 3 | 0 | 2 | 7 | 0 |
NOx | 1 | 2 | 0 | 10 | 0 | 0 |
NO2 | NOx | |||
---|---|---|---|---|
Actual | Lag | Actual | Lag | |
R2 | 0.51 | 0.56 | 0.46 | 0.52 |
MADE | 12.2 | 11.6 | 47.9 | 45.3 |
MAPE | 0.26 | 0.24 | 0.35 | 0.33 |
RMSE | 16.2 | 15.4 | 76.3 | 72.2 |
r | 0.72 | 0.75 | 0.68 | 0.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamińska, J.A.; Sciavicco, G.; Lucena-Sánchez, E.; Jiménez, F. Lag Variables in Air Pollution Modeling Based on Traffic Flow and Meteorological Factors. Proceedings 2020, 51, 1. https://doi.org/10.3390/proceedings2020051001
Kamińska JA, Sciavicco G, Lucena-Sánchez E, Jiménez F. Lag Variables in Air Pollution Modeling Based on Traffic Flow and Meteorological Factors. Proceedings. 2020; 51(1):1. https://doi.org/10.3390/proceedings2020051001
Chicago/Turabian StyleKamińska, Joanna A., Guido Sciavicco, Estrella Lucena-Sánchez, and Fernando Jiménez. 2020. "Lag Variables in Air Pollution Modeling Based on Traffic Flow and Meteorological Factors" Proceedings 51, no. 1: 1. https://doi.org/10.3390/proceedings2020051001
APA StyleKamińska, J. A., Sciavicco, G., Lucena-Sánchez, E., & Jiménez, F. (2020). Lag Variables in Air Pollution Modeling Based on Traffic Flow and Meteorological Factors. Proceedings, 51(1), 1. https://doi.org/10.3390/proceedings2020051001