Running Shoes—Possible Correlations of Biomechanical and Material Tests †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Running Shoes
- Asics GEL-NIMBUS 18, which is stated as “one of ASICS’ most recognised high performance footwear”. This running shoe uses the “rearfoot and forefoot gel® technology for its cushioning systems”, which should attenuate shock during impact and the toe-off phase [7];
- Brooks GLYCERIN 14, which due to its “super DNA midsole” and its pressure zones on the outsole is a running shoe with a “super-soft cushioning” [8];
- Cloudsurfer, which uses an open-cell technology where every single element is called a cloud. The Cloudsurfer has 13 clouds that provide a “soft landing” and a “dynamic kick” for the runner [9];
- Cloudflyer, which uses an open-cell technology and consists of 12 clouds that provide cushioning as well as stability [10].
2.2. Participants
2.3. Experimental Protocol—BIO
2.4. Experimental Protocol—MAT
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Conflicts of Interest
References
- Czioska, F. Der Optimale Laufschuh, 2nd ed.; Meyer & Meyer Verlag: Aachen, Germany, 2002. [Google Scholar]
- Nigg, B.M. Biomechanics of Running Shoes; Human Kinetics Publishers: Champaign, IL, USA, 1986. [Google Scholar]
- Caulfield, B.; McHugh, P.E.; Lohfeld, S. Dependence of mechanical properties of polyamide components on build parameters in the SLS process. J. Mater. Process. Technol. 2007, 182, 477–488. [Google Scholar] [CrossRef]
- Ghita, O.; James, E.; Davies, R.; Berretta, S.; Singh, B.; Flint, S.; Evans, K.E. High temperature laser sintering (HT-LS): An investigation into mechanical properties and shrinkage characteristics of poly (ether ketone) (PEK) structures. Mater. Des. 2014, 61, 124–132. [Google Scholar] [CrossRef]
- Majewski, C.E.; Toon, D.; Zarringhalam, H.; Hopkinson, N.; Caine, M.P. Tailoring the mechanical properties of selective laser sintered parts. In Proceedings of the International Solid Freeform Fabrication Symposium (SFF symposium 2008), Austin, TX, USA, 4–6 August 2008; pp. 94–103. [Google Scholar]
- Neff, C.; Hopkinson, N.; Crane, N.B. Selective laser sintering of diamond lattice structures: Experimental results of FEA model comparison. In Proceedings of the International Solid Freeform Fabrication Symposium SFF Symposium (SFF symposium 2015), Austin, TX, USA, 10–12 August 2015; pp. 1104–1117. [Google Scholar]
- ASICS Corporation. Available online: http://www.asics.com/us/en-us/gel-nimbus-18/p/0010255942.9351 (accessed on 9 November 2016).
- BROOKS Sports, Inc. Available online: http://www.brooksrunning.com/en_fr/brooks-glycerin-14-mens-running-shoes/110236.html (accessed on 9 November 2016).
- On AG. Available online: https://www.on-running.com/en-at/products/cloudsurfer-neon-grey-m?taxon_id=2 (accessed on 9 November 2016).
- On AG. Available online: https://www.on-running.com/en-at/products/cloudflyer-storm-flash-m?taxon_id=2 (accessed on 9 November 2016).
- Azevedo, A.P.D.S.; Brandina, K.; Bianco, R.; Oliveira, V.H.D.; Souza, J.R.D.; Mezencio, B.; Amadio, A.C.; Serrao, J.C. Effects of replica running shoes upon external forces and muscle activity during running. J. Sports Sci. 2012, 30, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Ueda, T.; Hobara, H.; Koayashi, Y.; Heldoorn, T.A.; Mochimaru, M.; Mizoguchi, H. Comparison of 3 Methods for Computing Loading Rate during Running. Int. J. Sports Med. 2016. [Google Scholar] [CrossRef]
- Gruber, A.H.; Boyer, K.A.; Derrick, T.R.; Hamil, J. Impact shock frequency components and attenuation in rearfoot and forefoot running. J. Sport Health Sci. 2014, 3, 113–121. [Google Scholar] [CrossRef]
- ASTM F1976-13; Standard Test Method for Impact Attenuation of Athletic Shoe Cushioning Systems and Materials. ASTM International: West Conshohocken, PA, USA, 2013.
- Milani, T.L.; Henning, E.M.; Lafortune, M.A. Perceptual and biomechanical variables for running in identical shoe construction with varying midsole hardness. Clin. Biomech. 1997, 12, 294–300. [Google Scholar] [CrossRef]
- Giandolini, M.; Gimenez, P.; Temesi, J.; Arnal, P.J.; Martin, V.; Rupp, T.; Morin, J.-B.; Samozino, P.; Millet, G.Y. Effect of the fatigue induced by a 110-km ultramarathon in tibial impact acceleration and lower leg kinematics. PLoS ONE 2016, 11, e0151687. [Google Scholar] [CrossRef] [PubMed]
- Schwanitz, S.; Möser, S.; Odenwald, S. Comparison of Test Methods to Quantify Shock Attenuating Properties of Athletic Footwear. Procedia Eng. 2010, 2, 2805–2810. [Google Scholar] [CrossRef]
Parameter [Unit] | Asics | Brooks | Cloudflyer | Cloudsurfer |
---|---|---|---|---|
MPA [g] | 7.4 ± 1.91 | 8.54 ± 1.66 | 7.93 ± 1.78 | 9.24 ± 1.8 |
MPF [Hz] | 6.86 ± 2.16 | 7.67 ± 2.63 | 7.79 ± 3.12 | 8.41 ± 2.41 |
F1 [BW] | 1.71 ± 0.29 | 1.76 ± 0.3 | 1.74 ± 0.22 | 1.73 ± 0.3 |
tF1 [ms] | 45.7 ± 8.7 | 38.3 ± 5.1 | 34.1 ± 4.8 | 34.1 ± 4.7 |
I75 [N*ms] | 113.7 ± 22.9 | 126.6 ± 24.5 | 126.4 ± 19.7 | 131 ± 22.6 |
FVGRF [BW] | 2.53 ± 0.23 | 2.53 ± 0.25 | 2.51 ± 0.22 | 2.51 ± 0.22 |
LR [BW/s] | 37.40 ± 0.63 | 45.97 ± 7.83 | 50.99 ± 6.45 | 50.81 ± 8.9 |
FA | HA | |||||||
---|---|---|---|---|---|---|---|---|
Parameter [Unit] | Asics | Brooks | Cloudflyer | Cloudsurfer | Asics | Brooks | Cloudflyer | Cloudsurfer |
Compression test - low loading condition (force: 400 N) with insoles | ||||||||
Disp [mm] | 8.9 ± 0.1 | 8.7 ± 0.2 | 6.7 ± 0.2 | 7.7 ± 0.2 | 9.4 ± 0.2 | 9.4 ± 0.2 | 8.7 ± 0.2 | 9.9 ± 0.4 |
Energy [N*mm] | 155.1 ± 9.8 | 164.9 ± 2.6 | 142.4 ± 2.7 | 129.3 ± 1.4 | 160.5 ± 1.3 | 162.8 ± 1.1 | 163.8 ± 2.4 | 159.1 ± 1.9 |
Compression test - low loading condition (force: 400 N) without insoles | ||||||||
Disp [mm] | 6.9 ± 0.2 | 6.4 ± 0.3 | 5.3 ± 0.2 | 6.2 ± 0.2 | 7.8 ± 0.3 | 7.3 ± 0.6 | 5.5 ± 0.3 | 6.3 ± 0.2 |
Energy [N*mm] | 154.3 ± 8.8 | 171.7 ± 3.3 | 135.3 ± 2.6 | 142.5 ± 5.2 | 165.7 ± 3.6 | 169.3 ± 8.4 | 157.5 ± 6.2 | 174.9 ± 3.1 |
Compression test - high loading condition (force: 1650 N) with insoles | ||||||||
Disp [mm] | 14.9 ± 0.3 | 13.7 ± 0.4 | 9.8 ± 0.3 | 10.5 ± 0.6 | 19.6 ± 0.7 | 19.1 ± 0.7 | 16.6 ± 0.6 | 16.7 ± 0.8 |
Energy [N*mm] | 607.1 ± 27.6 | 625.7 ± 15.2 | 619.4 ± 16.2 | 567.1 ± 11.8 | 658.6 ± 7.8 | 704.9 ± 21.9 | 631.9 ± 23.6 | 588.6 ± 14.4 |
Compression test - high loading condition (force: 1650 N) without insoles | ||||||||
Disp [mm] | 11.2 ± 0.4 | 11.2 ± 0.3 | 7.3 ± 0.3 | 9.1 ± 0.9 | 16.1 ± 0.3 | 15.7 ± 0.6 | 12.9 ± 0.3 | 12.9 ± 0.4 |
Energy [N*mm] | 688.3 ± 33.8 | 672.6 ± 27.4 | 662.5 ± 11.8 | 608.9 ± 17.4 | 730.4 ± 12.4 | 754.9 ± 36.2 | 737.9 ± 42.9 | 706.8 ± 24.5 |
Impact test with insoles | ||||||||
Disp [mm] | 9.6 ± 0.4 | 8.9 ± 0.3 | 7.1 ± 0.2 | 8.1 ± 0.3 | 9.5 ± 0.3 | 8.2 ± 0.2 | 8.7 ± 0.4 | 9.3 ± 0.3 |
Energy [N*mm] | 824.2 ± 28.6 | 798.2 ± 18.6 | 1090.1 ± 44 | 1224.5 ± 32.7 | 708.1 ± 8.3 | 714.1 ± 22.4 | 753.5 ± 15.3 | 758.9 ± 22 |
Impact test without insoles | ||||||||
Disp [mm] | 7.6 ± 0.3 | 7.8 ± 0.4 | 6.9 ± 0.1 | 7.6 ± 0.3 | 9.2 ± 0.4 | 8.9 ± 0.8 | 7.1 ± 0.2 | 7.3 ± 0.1 |
Energy [N*mm] | 943.6 ± 45.4 | 1064.9 ± 5 | 1531.7 ± 33.4 | 1560.9 ± 54.5 | 894.3 ± 22.2 | 884.4 ± 21.8 | 938.6 ± 35.9 | 909.3 ± 13.9 |
Disp | Energy | |||||||
---|---|---|---|---|---|---|---|---|
FA | HA | FA | HA | |||||
Parameter | without | with | without | with | without | with | without | with |
Compression test—low loading condition (force: 400 N) | ||||||||
MPA | 0.767 | 0.767 | 0.767 | 0.967 | 0.833 | 0.767 | 0.967 | 0.767 |
MPF | 0.7 | 0.7 | 0.7 | 0.9 | 0.867 | 0.7 | 0.9 | 0.8 |
F1 | 0.8 | 0.8 | 0.8 | 0.933 | 0.867 | 0.867 | 0.933 | 0.833 |
tF1 | 0.992 | 0.992 | 0.992 | 0.825 | 0.9583 | 0.9583 | 0.825 | 0.825 |
I75 | 0.7 | 0.7 | 0.7 | 0.767 | 0.833 | 0.833 | 0.767 | 0.967 |
FVGRF | 1 | 1 | 1 | 0.867 | 0.967 | 0.933 | 0.867 | 0.767 |
LR | 0.7 | 0.7 | 0.7 | 0.9 | 0.867 | 0.7 | 0.9 | 0.8 |
Compression test—high loading condition (force: 1650 N) | ||||||||
MPA | 0.767 | 0.767 | 0.7 | 0.767 | 0.7 | 0.8 | 0.8 | 0.767 |
MPF | 0.7 | 0.7 | 0.667 | 0.7 | 0.667 | 0.767 | 0.767 | 0.7 |
F1 | 0.8 | 0.8 | 0.767 | 0.8 | 0.767 | 0.9 | 0.9 | 0.867 |
tF1 | 0.992 | 0.992 | 0.992 | 0.992 | 0.992 | 0.875 | 0.875 | 0.9583 |
I75 | 0.7 | 0.7 | 0.767 | 0.7 | 0.767 | 0.933 | 0.933 | 0.833 |
FVGRF | 1 | 1 | 0.967 | 1 | 0.967 | 0.833 | 0.833 | 0.933 |
LR | 0.7 | 0.7 | 0.667 | 0.7 | 0.667 | 0.767 | 0.767 | 0.7 |
Impact test | ||||||||
MPA | 0.933 | 0.767 | 0.767 | 0.767 | 0.967 | 0.9 | 0.833 | 0.967 |
MPF | 0.833 | 0.7 | 0.7 | 0.8 | 1 | 0.967 | 0.933 | 1 |
F1 | 0.967 | 0.8 | 0.8 | 0.7 | 0.9 | 0.8 | 0.767 | 0.9 |
tF1 | 0.875 | 0.992 | 0.992 | 0.892 | 0.692 | 0.725 | 0.725 | 0.692 |
I75 | 0.8 | 0.7 | 0.7 | 0.7 | 0.9 | 0.833 | 0.9 | 0.9 |
FVGRF | 0.9 | 1 | 1 | 0.9 | 0.7 | 0.733 | 0.7 | 0.7 |
LR | 0.83 | 0.7 | 0.7 | 0.8 | 1 | 0.967 | 0.933 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eckelt, M.; Mally, F. Running Shoes—Possible Correlations of Biomechanical and Material Tests. Proceedings 2020, 49, 25. https://doi.org/10.3390/proceedings2020049025
Eckelt M, Mally F. Running Shoes—Possible Correlations of Biomechanical and Material Tests. Proceedings. 2020; 49(1):25. https://doi.org/10.3390/proceedings2020049025
Chicago/Turabian StyleEckelt, Markus, and Franziska Mally. 2020. "Running Shoes—Possible Correlations of Biomechanical and Material Tests" Proceedings 49, no. 1: 25. https://doi.org/10.3390/proceedings2020049025
APA StyleEckelt, M., & Mally, F. (2020). Running Shoes—Possible Correlations of Biomechanical and Material Tests. Proceedings, 49(1), 25. https://doi.org/10.3390/proceedings2020049025