The New Method Using Shannon Entropy to Decide the Power Exponents on JMAK Equation †
Abstract
:1. Introduction
2. Method: Maximum Entropy Estimation Method Based on the JMAK Equation
3. Result and Discussion
3.1. Constraint Condition of n-th Moment
3.2. Constraint Condition of Second Cumulant: Variance
3.3. Constraint Condition of Third Cumulant: Skewness
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Kohlrausch, R. Theorie des elektrischen Rückstandes in der Leidener Flasche. Ann. Phys. Chem. 1854, 91, 179–214. [Google Scholar] [CrossRef]
- Williams, G.; Watt, D.C. Non-Symmetrical Dielectric Relaxation Behaviour Arising from a Simple Empirical Decay Function. Trans. Faraday Soc. 1970, 66, 80–85. [Google Scholar] [CrossRef]
- Majumber, C.K. Stress relaxation function of glass. Solid. State. Comm. 1971, 9, 1087–1090. [Google Scholar] [CrossRef]
- Yatabe, Z.; Miyake, Y.; Tachibana, M.; Hashimoto, C.; Pansu, R.; Ushiki, H. Formation process of shear-induced onion structure made of quaternary system SDS/octanol/water/NaCl. Chem. Phys. Lett. 2008, 456, 31–35. [Google Scholar] [CrossRef]
- Yatabe, Z.; Hidema, R.; Hashimoto, C.; Pansu, R.B.; Ushiki, H. Size evolution of onion structure under oscillatory shear flow. Chem. Phys. Lett. 2009, 475, 101–104. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. On the statistical theory of metal crystallization. In Selected Works of A. N. Kolmogorov Volume II Probability Theory and Mathematical Statics; Shiryayev, A.N., Ed.; Springer-Science+Business Media, B.V.: Berlin/Heidelberg, Germany, 1992; pp. 188–192. [Google Scholar]
- Avrami, M. Kinetics of Phase Change. I. General Theory. J. Chem. Phys. 1939, 7, 1103–1112. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of Phase Change. II. Transformation-Time Relations for Random Distribution of Nuclei. J. Chem. Phys. 1940, 8, 212–224. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of Phase Change. III. Granulation, Phase Change, and Microstructure Kinetics of Phase Change. J. Chem. Phys. 1941, 9, 177–184. [Google Scholar] [CrossRef]
- Slonimsky, G.L. On the Laws of Deformation of Real Materials. I. Acta Physicochim. 1940, 7, 99–128. [Google Scholar]
- Oka, S.; Okawa, A. The recent studies on the mechanical property of amorphous matters. J. Phys. Soc. Jpn. 1942, 16, 174. [Google Scholar]
- Lam, R.S.H.; Rogers, M.A. Experimental validation of the modified avrami model for non-isothermal crystallization conditions. Cryst. Eng. Commun. 2010, 13, 866–875. [Google Scholar] [CrossRef]
- Wang, R.-Y.; Zou, S.-F.; Jiang, B.-Y.; Fan, B.; Hou, M.-F.; Zuo, B.; Wang, X.-P.; Xu, J.-T.; Fan, Z.-Q. A generalized Avrami equation for crystallization kinetics of polymers with concomitant double crystallization processes. Cryst. Growth Des. 2017, 17, 5908–5917. [Google Scholar] [CrossRef]
- Bruna, P.; Crespo, D.; González-Cinca, R. On the validity of Avrami formalism in primary crystallization. J. Appl. Phys. 2006, 100, 054907. [Google Scholar] [CrossRef]
- Meng, Z.; Yang, L.; Geng, W.; Yao, Y.; Wang, X.; Liu, Y. Kinetic study on the isothermal and Nonisothermal crystallization of monoglyceride organogels. Sci. World J. 2014, 2014, 149753. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.X.; Liu, X.D.; Lu, K. An Explanation to the anomalous Avrami Exponent. Scr. Mater. 1996, 34, 1201–1207. [Google Scholar] [CrossRef]
- Shinha, I.; Mandal, R.K. Avrami exponent under transient and heterogeneous nucleation transformation conditions. J. Non-Cryst. Solids 2011, 357, 919–925. [Google Scholar] [CrossRef]
- Yang, J.; McCoy, B.J. Distribution kinetics of polymer crystallization and the Avrami equation. J. Chem. Phys. 2005, 122, 064901. [Google Scholar] [CrossRef]
- Burbelko, A.A. Screening effect during the growth of spheroidal grains vs deviations from Kolmogorov- Johnson-Mehl-Avrami equation. Arch. Foundry Eng. 2008, 8, 35–40. [Google Scholar]
- Price, F.P. Some Comments on the “Avrami” equation. J. Appl. Phys. 1965, 36, 3014–3016. [Google Scholar] [CrossRef]
- Weibull, W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Fisher, R.A.; Tippett, L.H.C. Limiting forms of the frequency distribution of the largest and smallest member of a sample. Proc. Camb. Phil. Soc. 1928, 24, 180–190. [Google Scholar] [CrossRef]
- Fréchet, M. Sur la loi de probabilité de l’écart maximum. Ann. Société Pol. Math. 1927, 6, 93–116. [Google Scholar]
- Horst, R. The Weibull Distribution A Handbook; CRC Press: Boca Raton, FL, USA, USA, 2009; p. 34. [Google Scholar]
- Palmer, R.G.; Stein, D.L.; Abrahams, E.; Anderson, P.W. Models of Hierarchically Constrained Dynamics for Glassy Relaxation. Phys. Rev. Lett. 1984, 53, 958–961. [Google Scholar] [CrossRef]
- Phillips, J.C. Stretched exponential relaxation in molecular and electronic glasses. Rep. Prog. Phys. 1996, 59, 1133–1207. [Google Scholar] [CrossRef]
- Evesque, P. Energy migration in randomly doped crystals: Geometrical properties of space and kinetic laws. J. Physique 1983, 44, 1217–1224. [Google Scholar]
- Maruoka, H.; Nishimura, A.; Ushiki, H.; Hatada, K. Stretched exponential relaxation process of onion structures under various oscillatory shears with analysis using Shannon entropy. Chem. Phys. 2018, 513, 280–286. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information Theory and Statistical Mechanics. II. Phys. Rev. 1957, 108, 171–190. [Google Scholar] [CrossRef]
- Arndt, C. Information Measures; Springer: Berlin, Germany, 2004; pp. 433–462. [Google Scholar]
- Rosin, P.; Rammler, E. The Laws Governing the Fineness of Powdered Coal. J. Inst. Fuel 1933, 7, 29–36. [Google Scholar]
- Hashimoto, C.; Panizza, P.; Rouch, J.; Ushiki, H. Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β>1. J. Phys. Condens. Matter 2005, 17, 6319–6328. [Google Scholar] [CrossRef]
- Arnold, V.I.; Avez, A. Ergodic Problems of Classical Mechanics; Benjamin: New York, NY, USA, 1968; pp. 41–42. [Google Scholar]
n | |
---|---|
1 | 1 |
2 | 1.2994 |
3 | 1.5 |
4 | 1.6533 |
5 | 1.7784 |
10 | 2.1981 |
100 | 3.8527 |
1000 | 5.7403 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maruoka, H. The New Method Using Shannon Entropy to Decide the Power Exponents on JMAK Equation . Proceedings 2020, 46, 28. https://doi.org/10.3390/ecea-5-06660
Maruoka H. The New Method Using Shannon Entropy to Decide the Power Exponents on JMAK Equation . Proceedings. 2020; 46(1):28. https://doi.org/10.3390/ecea-5-06660
Chicago/Turabian StyleMaruoka, Hirokazu. 2020. "The New Method Using Shannon Entropy to Decide the Power Exponents on JMAK Equation " Proceedings 46, no. 1: 28. https://doi.org/10.3390/ecea-5-06660
APA StyleMaruoka, H. (2020). The New Method Using Shannon Entropy to Decide the Power Exponents on JMAK Equation . Proceedings, 46(1), 28. https://doi.org/10.3390/ecea-5-06660