High Sensitivity Optical Sensing Based on Modal Interferences in One-Dimensional Photonic Crystals †
Abstract
:1. Introduction
2. Methods
2.1. Photonic Crystal Design
2.2. Principle of Operation
3. Results and Discussion
3.1. Interferometric Performance of the Sensor
3.2. Phase and Wavelength Shift Based Sensing
3.3. Optimization of the Sensor Parameters
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Estevez, M.C.; Alvarez, M.; Lechuga, L.M. Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photon. Rev. 2012, 6, 463–487. [Google Scholar] [CrossRef]
- Gavela, A.F.; García, D.G.; Ramirez, J.C.; Lechuga, L.M. Last advances in silicon-based optical biosensors. Sensors 2016, 16, 285. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.; Ruschin, S. SPR waveguide sensor based on transition of modes at abrupt discontinuity. Sens. Actuators B Chem. 2007, 124, 459–465. [Google Scholar] [CrossRef]
- Sarkar, D.; Gunda, N.S.K.; Jamal, I.; Mitra, S.K. Optical biosensors with an integrated Mach-Zehnder Interferometer for detection of Listeria monocytogenes. Biomed. Microdevices 2014, 16, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tu, X.; Kim, K.W.; Kee, J.S.; Shin, Y.; Han, K.; Yoon, Y.J.; Lo, G.Q.; Park, M.K. Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sens. Actuators B Chem. 2013, 188, 681–688. [Google Scholar] [CrossRef]
- Prieto, F.; Sepúlveda, B.; Calle, A.; Llobera, A.; Domínguez, C.; Abad, A.; Montoya, A.; Lechuga, L.M. An integrated optical interferometric nanodevice based on silicon technology for biosensor applications. Nanotechnology 2003, 14, 907–912. [Google Scholar] [CrossRef]
- Levy, R.; Ruschin, S. Design of a single-channel modal interferometer waveguide sensor. IEEE Sens. J. 2009, 9, 146–153. [Google Scholar] [CrossRef]
- Povinelli, M.L.; Johnson, S.G.; Joannopoulos, J.D. Slow-light, band-edge waveguides for tunable time delays. Opt. Express 2005, 13, 7145–7159. [Google Scholar] [CrossRef] [PubMed]
- Soljačić, M.; Johnson, S.G.; Fan, S.; Ibanescu, M.; Ippen, E.; Joannopoulos, J.D. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B 2002, 19, 2052. [Google Scholar] [CrossRef]
- Castelló, J.G.; Toccafondo, V.; Pérez-Millán, P.; Losilla, N.S.; Cruz, J.L.; Andrés, M.V.; García-Rupérez, J. Real-time and low-cost sensing technique based on photonic bandgap structures. Opt. Lett. 2011, 36, 2707. [Google Scholar] [CrossRef] [PubMed]
- Joannopoulos, J.; Johnson, S.G.; Josua, N.W.; Meade, R.D. Photonic Crystals—Molding the Flow of Light, 2nd edition; Princeton University Press: Princeton, NJ, USA; Oxford, UK, 2008; ISBN 9780444531254. [Google Scholar]
- Garcia, J.; Sanchis, P.; Martinez, A.; Cuesta-Soto, F.; Blasco, J.; Griol, A.; Marti, J. Corrugated SOI Waveguide for Optimal Slow-Light Elements. In Proceedings of the 3rd IEEE International Conference on Group IV Photonics, Ottawa, ON, Canada, 13–15 September 2006; pp. 113–115. [Google Scholar] [CrossRef]
- García-Rupérez, J.; Toccafondo, V.; Bañuls, M.J.; Castelló, J.G.; Griol, A.; Peransi-Llopis, S.; Maquieira, Á. Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime. Opt. Express 2010, 18, 24276–24286. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Joannopoulos, J. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 2001, 8, 173. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kumar, A.; Tripathi, S.M. Optical waveguide biosensor based on modal interference between surface plasmon modes. Sens. Actuators B Chem. 2015, 211, 456–461. [Google Scholar] [CrossRef]
- Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.D.; Sun, Y. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 2008, 620, 8–26. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrijos-Morán, L.; García-Rupérez, J. High Sensitivity Optical Sensing Based on Modal Interferences in One-Dimensional Photonic Crystals. Proceedings 2019, 4, 20. https://doi.org/10.3390/ecsa-5-05714
Torrijos-Morán L, García-Rupérez J. High Sensitivity Optical Sensing Based on Modal Interferences in One-Dimensional Photonic Crystals. Proceedings. 2019; 4(1):20. https://doi.org/10.3390/ecsa-5-05714
Chicago/Turabian StyleTorrijos-Morán, Luis, and Jaime García-Rupérez. 2019. "High Sensitivity Optical Sensing Based on Modal Interferences in One-Dimensional Photonic Crystals" Proceedings 4, no. 1: 20. https://doi.org/10.3390/ecsa-5-05714
APA StyleTorrijos-Morán, L., & García-Rupérez, J. (2019). High Sensitivity Optical Sensing Based on Modal Interferences in One-Dimensional Photonic Crystals. Proceedings, 4(1), 20. https://doi.org/10.3390/ecsa-5-05714