Bayesian Inference and Maximum Entropy Methods in Science and Engineering—MaxEnt 2019†
- Inverse problems
- Uncertainty quantification (UQ)
- Gaussian process (GP) regression
- Optimal experimental design
- Data assimilation and Causal Inference
- Data mining, ML algorithms
- Numerical integration
- Information geometry
- Real world applications in various fields of science and engineering (e.g., earth science, astrophysics, material and plasma science, imaging in geophysics and medicine, nondestructive testing, density estimation, remote sensing)
Acknowledgments
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Toussaint, U.; Preuss, R. Bayesian Inference and Maximum Entropy Methods in Science and Engineering—MaxEnt 2019†. Proceedings 2019, 33, 8. https://doi.org/10.3390/proceedings2019033008
von Toussaint U, Preuss R. Bayesian Inference and Maximum Entropy Methods in Science and Engineering—MaxEnt 2019†. Proceedings. 2019; 33(1):8. https://doi.org/10.3390/proceedings2019033008
Chicago/Turabian Stylevon Toussaint, Udo, and Roland Preuss. 2019. "Bayesian Inference and Maximum Entropy Methods in Science and Engineering—MaxEnt 2019†" Proceedings 33, no. 1: 8. https://doi.org/10.3390/proceedings2019033008
APA Stylevon Toussaint, U., & Preuss, R. (2019). Bayesian Inference and Maximum Entropy Methods in Science and Engineering—MaxEnt 2019†. Proceedings, 33(1), 8. https://doi.org/10.3390/proceedings2019033008