A Novel Method for LWIR Hyperspectral Target Detection by Means of a Subspace-Based Approach †
Abstract
:1. Introduction
2. Materials and Method
2.1. Algorithm Description
2.2. Determination of the Basis Matrix
2.3. Simulation Strategy
3. Results and Discussion
4. Conclusions
References
- Diani, M.; Moscadelli, M.; Corsini, G. Improved Alpha Residuals for Target Detection in Thermal Hyperspectral Imaging. IEEE Geosci. Remote Sens. Lett. 2018, 15, 779–783. [Google Scholar] [CrossRef]
- N. Acito and M. Diani and G. Corsini. Coupled Subspace-Based Atmospheric Compensation of LWIR Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. Early Access Article. 2019. [Google Scholar] [CrossRef]
- Eismann, M.T. Hyperspectral Remote Sensing; SPIE-Press: Washington, DC, USA, 2012. [Google Scholar]
- Pieper, M.; Manolakis, D.; Truslow, E.; Cooley, T.; Brueggeman, M.; et al. In-scene LWIR downwelling radiance estimation. Proc. SPIE 9976, Imaging Spectrometry XXI 2016, 99760E. [Google Scholar]
- Acito, N.; Corsini, G.; Diani, M.; Matteoli, S.; Riccobono, A.; Rossi, A. Validation of forward modeling target detection approach on a new hyperspectral data set featuring an urban scenario and variable illumination conditions. Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS) 2015, 5075–5078. [Google Scholar]
- Levesque, J.; Puckrin, E.; Lahaie, P.; Turcotte, C. Detection of Unexploded Ordnance Using Airborne LWIR Emissivity Signatures. Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS) 2015, 5071–5074. [Google Scholar]
- Lahaie, P.; Levesque, J. Sub-pixel target detection in LWIR hyperspectral imagery using ground leaving radiance. Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS) 2015, 4436–4439. [Google Scholar]
- Ranking, B.; Meola, J.; Perry, D.; Kaufman, J. Methods and challenges for target detection and material identification for longwave infrared hyperspectral imagery. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII, Proceedings of SPIE Defense + Security. Baltimore, MD, USA; 2016; p. 98400Z. [Google Scholar]
- Ranking, B.; Meola, J.; Eismann, M.T. Spectral Radiance Modeling and Bayesian Model Averaging for Longwave Infrared Hyperspectral Imagery and Subpixel Target Identification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6726–6735. [Google Scholar] [CrossRef]
- MODIS. Available online: https://icess.eri.ucsb.edu/modis/EMIS/html/em.htm (accessed on 1 August 2019).
- Kotthaus, S.; Smith, T.E.L.; Wooster, M.J.; Grimmond, C.S. Derivation of an urban materials spectral library through emittance and reflectance spectroscopy. ISPRS J. Photogramm. Remote Sens. 2014, 94, 194–212. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moscadelli, M.; Acito, N.; Diani, M.; Corsini, G. A Novel Method for LWIR Hyperspectral Target Detection by Means of a Subspace-Based Approach. Proceedings 2019, 27, 47. https://doi.org/10.3390/proceedings2019027047
Moscadelli M, Acito N, Diani M, Corsini G. A Novel Method for LWIR Hyperspectral Target Detection by Means of a Subspace-Based Approach. Proceedings. 2019; 27(1):47. https://doi.org/10.3390/proceedings2019027047
Chicago/Turabian StyleMoscadelli, Matteo, Nicola Acito, Marco Diani, and Giovanni Corsini. 2019. "A Novel Method for LWIR Hyperspectral Target Detection by Means of a Subspace-Based Approach" Proceedings 27, no. 1: 47. https://doi.org/10.3390/proceedings2019027047
APA StyleMoscadelli, M., Acito, N., Diani, M., & Corsini, G. (2019). A Novel Method for LWIR Hyperspectral Target Detection by Means of a Subspace-Based Approach. Proceedings, 27(1), 47. https://doi.org/10.3390/proceedings2019027047