Principal Components Analysis for the Interpretation of Humidification Phenomena—Preliminary Results †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Procedures
2.2. Imaging Processing—Principal Component Analysis (PCA)
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Balaras, C.; Argiriou, A. Infrared thermography for building diagnostics. Energy Build. 2002, 34, 171–183. [Google Scholar] [CrossRef]
- Avdelidis, N.; Moropoulou, A.; Theoulakis, P. Detection of water deposits and movement in porous materials by infrared imaging. Infrared Phys. Technol. 2003, 44, 183–190. [Google Scholar] [CrossRef]
- Menezes, A.; Gomes, M.G.; Flores-Colen, I. In-situ assessment of physical performance and degradation analysis of rendering walls. Constr. Build. Mater. 2015, 75, 283–292. [Google Scholar] [CrossRef]
- Edis, E.; Flores-Colen, I.; Brito, J. Passive thermographic detection of moisture problems in façades with adhered ceramic cladding. Constr. Build. Mater. 2014, 51, 187–197. [Google Scholar] [CrossRef]
- Barreira, E.; Almeida, R.M.S.F.; Ferreira, J.P.B. Assessing the humidification process of lightweight concrete specimens through infrared thermography. Energy Procedia 2017, 132, 213–218. [Google Scholar] [CrossRef]
- Camino, M.S.; León, F.J.; Llorente, A.; Olivar, J.M. Evaluation of the behaviour of brick tile masonry and mortar due to capillary rise of moisture. Mater de Construcción 2014, 64, 020. [Google Scholar]
- Lerma, C.; Mas, Á.; Gil, E.; Vercher, J.; Peñalver, M.J. Pathology of building materials in historic buildings. Relationship between laboratory testing and infrared thermography. Materiales de Construcción 2014, 64, 009. [Google Scholar] [CrossRef]
- Barreira, E.; Almeida, R.M.S.F.; Ferreira, J.P.B. Assessing the humidification process of lightweight concrete specimens through infrared thermography. Energy Procedia 2017, 132, 213–218. [Google Scholar] [CrossRef]
- Grinzato, E.; Cadelano, G.; Bison, P. Moisture map by IR thermography. J. Modern. Optics. 2010, 57, 1770–1778. [Google Scholar] [CrossRef]
- Bison, P.; Cadelano, G.; Grinzato, E. Thermographic signal reconstruction with periodic temperature variation applied to moisture classification. Quant Infrared Thermography J. 2011, 8, 221–238. [Google Scholar] [CrossRef]
- Lerma, J.; Cabrelles, M.; Portalés, C. Multitemporal thermal analysis to detect moisture on a building façade. Constr. Build. Mater. 2011, 25, 2190–2197. [Google Scholar] [CrossRef]
- Edis, E.; Flores-Colen, I.; Brito, J. Quasi-quantitative infrared thermographic detection of moisture variation in facades with adhered ceramic cladding using principal component analysis. Build. Environ. 2015, 94, 97–108. [Google Scholar] [CrossRef]
- Barreira, E.; Almeida, R.M.S.F.; Delgado, J.M.P.Q. Infrared thermography for assessing moisture related phenomena in building components. Constr. Build. Mater. 2016, 110, 251–269. [Google Scholar] [CrossRef]
- Rajic, N. Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Compos. Struct. 2002, 58, 521–528. [Google Scholar] [CrossRef]
- Griefahn, D.; Wollnack, J.; Hintze, W. Principal component analysis for fast and automated thermographic inspection of internal structures in sandwich parts. J. Sens. Sens. Syst. 2014, 3(1), 105–111. [Google Scholar]
- Marinetti, S.; Finesso, L.; Marsilio, E. Matrix factorization methods: Application to thermal NDT/E. NDT&E Int. 2006, 39, 611–616. [Google Scholar]
Dimensions | 0.28 × 0.21 × 0.075 m3 |
Dry density | 1351 kg/m3 |
(BS EN 12390-7:2000) | |
Water absorption | 4.521 × 10−3 g/(mm2.h0.5) |
coefficient | (ISO 15148:2002) |
Emissivity | 0.91 |
(ASTM C1371 − 04a) |
Measuring range | −20 °C to 100 °C |
Resolution | 0.06 °C at 30 °C, 60Hz |
Accuracy | ±2 °C or ±2% |
Detector | FPA (microbolometer) |
Spectral range | 8 and 14.0 μm |
I.F.O.V | 1.2 mrad |
Thermal resolution | 320 x 240 pixels |
Field of view | 22° × 16° |
Tested scenario | Number of PC | Explained variance (%) | ||||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | Total | ||
Tx-T007; 0–24 hours | 2 | 94.3 | 2.3 | 0 | 0 | 96.6 |
Tx-T193; 0–24 hours | 4 | 55.8 | 11.6 | 1.6 | 0.9 | 69.9 |
Tx-T007; 0–8 hours | 2 | 91.5 | 4.1 | 0 | 0 | 95.6 |
Tx-T193; 0–8 hours | 2 | 77.4 | 5.2 | 0 | 0 | 82.6 |
Tx-T007; 8–16 hours | 1 | 97.9 | 0 | 0 | 0 | 97.9 |
Tx-T193; 8–16 hours | 2 | 59.3 | 3.2 | 0 | 0 | 62.5 |
Tx-T007; 16–24 hours | 1 | 98.3 | 0 | 0 | 0 | 98.3 |
Tx-T193; 16–24 hours | 1 | 52.1 | 0 | 0 | 0 | 52.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreira, E.; Simões, M.L.; Almeida, R.M.S.F.; Pinto, S. Principal Components Analysis for the Interpretation of Humidification Phenomena—Preliminary Results. Proceedings 2019, 27, 2. https://doi.org/10.3390/proceedings2019027002
Barreira E, Simões ML, Almeida RMSF, Pinto S. Principal Components Analysis for the Interpretation of Humidification Phenomena—Preliminary Results. Proceedings. 2019; 27(1):2. https://doi.org/10.3390/proceedings2019027002
Chicago/Turabian StyleBarreira, Eva, Maria Lurdes Simões, Ricardo M. S. F. Almeida, and Sofia Pinto. 2019. "Principal Components Analysis for the Interpretation of Humidification Phenomena—Preliminary Results" Proceedings 27, no. 1: 2. https://doi.org/10.3390/proceedings2019027002
APA StyleBarreira, E., Simões, M. L., Almeida, R. M. S. F., & Pinto, S. (2019). Principal Components Analysis for the Interpretation of Humidification Phenomena—Preliminary Results. Proceedings, 27(1), 2. https://doi.org/10.3390/proceedings2019027002