You are currently viewing a new version of our website. To view the old version click .
Proceedings
  • Abstract
  • Open Access

5 September 2019

Time-Resolved Investigations and Biotechnological Applications of Plasmonic Nanostructures

Physics and Materials Science Research Unit, University of Luxembourg, 162a avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg
Presented at the 37th International Symposium on Dynamical Properties of Solids (DyProSo 2019), Ferrara, Italy, 8–12 September 2019.
This article belongs to the Proceedings The 37th International Symposium on Dynamical Properties of Solids
Plasmonics exploits the collective motion of conduction electrons in metals (plasmons), thus enabling light to couple with nanoscale objects, with the consequent generation of a plenty of novel and unexpected optical effects and functionalities. Plasmonic nanostructures have been deeply studied in the last decade due to their crucial impact on several areas of nanoscience and nanotechnology. Their unrivalled capability to squeeze light well beyond its diffraction limit, leading to extremely confined and enhanced electromagnetic fields on the nanoscale at optical frequencies, is of great interest for the prospect of real-life applications, such as energy harvesting and photovoltaics, wave-guiding and lasing, optoelectronics, fluorescence emission enhancement, plasmon-assisted bio-interfaces and nanomedicine. In this framework, traditional studies of the resonant behavior of plasmonic nanoantennas rely on standard intensity detection schemes. Up to date, the temporal dynamics of plasmonic nanoantennas remains challenging. In the first part of the talk we will show that, by combining femtosecond time-domain spectroscopy and high-resolution confocal microscopy, it is possible to measure full time- and field-resolved response of single plasmonic nanoantennas [1]. In the second part of the talk, we will then show practical applications of plasmonic nanostructures to single-molecule detection [2,3,4], enhanced spectroscopy on single-cells [5,6,7], optical trapping [8,9], enhanced Raman scattering [10,11,12] and resonant energy transfer [13].

References

  1. Fischer, M.P.; Maccaferri, N.; Gallacher, K.; Frigerio, J.; Pellegrini, G.; Isella, G.; Leitenstorfer, A.; Paul, D.J.; Biagioni, P.; Brida, D. Field-resolved response of plasmonic antenna. In Proceedings of the CLEO/Europe- EQEC 2019, Munich, Germany, 23–27 June 2019; p. EG-1.4. [Google Scholar]
  2. Verre, R.; Maccaferri, N.; Fleischer, K.; Svedendahl, M.; Odebo Länk, N.; Dmitriev, A.; Vavassori, P.; Shvets, I.V.; Käll, M. Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces. Nanoscale 2016, 8, 10576. [Google Scholar] [CrossRef] [PubMed]
  3. Ponzellini, P.; Zambrana-Puyalto, X.; Maccaferri, N.; Lanzanò, L.; De Angelis, F.; Garoli, D. Plasmonic zero mode waveguide for highly confined and enhanced fluorescence emission. Nanoscale 2018, 10, 17362. [Google Scholar] [CrossRef] [PubMed]
  4. Zambrana-Puyalto, X.; Ponzellini, P.; Maccaferri, N.; Tessarolo, E.; Pelizzo, M.G.; Zhang, W.; Barbillon, G.; Lu, G.; Garoli, D. A hybrid metal–dielectric zero mode waveguide for enhanced single molecule detection. Chem. Commun. 2019, 55, 9725. [Google Scholar] [CrossRef] [PubMed]
  5. Ardini, M.; Huang, J.-A.; Sánchez, C.S.; Mousavi, M.Z.; Caprettini, V.; Maccaferri, N.; Melle, G.; Bruno, G.; Pasquale, L.; Garoli, D.; et al. Live Intracellular Biorthogonal Imaging by Surface Enhanced Raman Spectroscopy using Alkyne-Silver Nanoparticles Clusters. Sci. Rep. 2018, 8, 12652. [Google Scholar] [CrossRef] [PubMed]
  6. Caprettini, V.; Huang, J.-A.; Moia, F.; Jacassi, A.; Gonano, C.A.; Maccaferri, N.; Capozza, R.; Dipalo, M.; De Angelis, F. Enhanced Raman Investigation of Cell Membrane and Intracellular Compounds by 3D Plasmonic Nanoelectrode Arrays. Adv. Sci. 2018, 5, 1800560. [Google Scholar] [CrossRef] [PubMed]
  7. Huang, J.-A.; Caprettini, V.; Zhao, Y.; Melle, G.; Maccaferri, N.; Deleye, L.; Zambrana-Puyalto, X.; Ardini, M.; Tantussi, F.; Dipalo, M.; et al. On-Demand Intracellular Delivery of Single Particles in Single Cells by 3D Hollow Nanoelectrodes. Nano Lett. 2019, 19, 722. [Google Scholar] [CrossRef] [PubMed]
  8. Messina, G.C.; Zambrana-Puyalto, X.; Maccaferri, N.; Garoli, D.; De Angelis, F. Switchable two-state plasmonic tweezers for dynamic manipulation of nano-objects. arXiv 2019, arXiv:1903.03865. [Google Scholar] [CrossRef] [PubMed]
  9. Zhang, X.J.; Shen, Y.; Liu, K.; Li, X.; Maccaferri, N.; Gorodetski, Y.; Garoli, D. Nanoparticles manipulation in 3D nanotips excited with plasmonic vortex. arXiv 2019, arXiv:1908.04549. [Google Scholar]
  10. Garoli, D.; Mosconi, D.; Miele, E.; Maccaferri, N.; Ardini, M.; Giovannini, G.; Dipalo, M.; Agnoli, S.; De Angelis, F. Hybrid plasmonic nanostructures based on controlled integration of MoS2 flakes on metallic nanoholes. Nanoscale 2018, 10, 17105. [Google Scholar] [CrossRef] [PubMed]
  11. Mosconi, D.; Giovannini, G.; Jacassi, A.; Ponzellini, P.; Maccaferri, N.; Vavassori, P.; Serri, M.; Dipalo, M.; Darvill, D.; De Angelis, F.; Agnoli, S.; Garoli, D. Site-selective integration of MoS2 flakes on nanopores by means of electrophoretic deposition. ACS Omega 2019, 4, 9294. [Google Scholar] [CrossRef] [PubMed]
  12. Giovannini, G.; Ardini, M.; Maccaferri, N.; Zambrana-Puyalto, X.; Panella, G.; Angelucci, F.; Ippoliti, R.; Garoli, D.; De Angelis, F. Chemically-controlled self-assembly of hybrid plasmonic nanopores on graphene. arXiv 2019, arXiv:1908.04997. [Google Scholar]
  13. Zambrana-Puyalto, X.; Maccaferri, N.; Ponzellini, P.; Giovannini, G.; De Angelis, F.; Garoli, D. Nanoscale Adv. 2019, 1, 2454. [CrossRef] [PubMed]

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.