Next Article in Journal
Colloidal Quantum Dots for Low-Power-Consumption Semiconductor Gas Sensors
Previous Article in Journal
Potential of Parametric X-rays for Application in Particle Identification Detectors
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Abstract

Energy Scale of the Charge Density Wave in Cuprate Superconductors †

1
Laboratoire Matériaux et Phénomènes Quantiques (UMR 7162 CNRS), Université de Paris, Bat. Condorcet, 75205 Paris CEDEX 13, France
2
Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay CEDEX, France
3
Laboratoire National des Champs Magnéetiques Intenses, CNRS-Université Grenoble Alpes-Université Paul Sabatier-Institut National des Sciences Appliquées, European Magnetic Field Laboratory, 38042 Grenoble, France
4
Service de Physique de l''Etat Condensé, DSM/IRAMIS/SPEC (UMR 3680 CNRS), CEA Saclay 91191 Gif sur Yvette CEDEX, France
*
Author to whom correspondence should be addressed.
Presented at the 37th International Symposium on Dynamical Properties of Solids (DyProSo 2019), Ferrara, Italy, 8–12 September 2019.
Proceedings 2019, 26(1), 20; https://doi.org/10.3390/proceedings2019026020
Published: 5 September 2019
(This article belongs to the Proceedings of The 37th International Symposium on Dynamical Properties of Solids)
The cuprate high temperature superconductors develop spontaneous charge density wave (CDW) order below a temperature TCDW and over a wide range of hole doping (p). An outstanding challenge in the field is to understand whether this modulated phase is related to the more exhaustively studied pseudogap and superconducting phases [1]. To address this issue, it is important to extract the energy scale ΔCDW associated with the CDW order, and to compare it with the pseudogap (PG) ΔPG and with the superconducting gap ΔSC. However, while TCDW is well-characterized from earlier work, little is known about ΔCDW until now. Here, we report the extraction of ΔCDW for several cuprates using electronic Raman spectroscopy [2]. Crucially, we find that upon approaching the parent Mott state by lowering p, ΔCDW increases in a manner similar to the doping dependence of ΔPG and ΔSC [2]. This indicates that the above three phases have a common microscopic origin [2]. In addition, we find that ΔCDW and ΔSC have the same magnitude over a substantial doping range, which suggests that CDW and superconducting phases are intimately related [2], as reported for example by fractionalized pair density wave [3].

References

  1. Keimer, B.; Kivelson, S.A.; Norman, M.R.; Zaanen, S.U.J. From quantum matter to high-temperature superconductivity in copper oxide. Nature 2015, 518, 179. [Google Scholar] [CrossRef] [PubMed]
  2. Loret, B.; Auvray, N.; Gallais, Y.; Cazayous, M.; Forget, A.; Colson, D.; Julien, M.-H.; Paul, I.; Civelli, M.; Sacuto, A. Intimate link between charge density wave, pseudogap and superconducting energy scales in cuprates. Nature Phys. 2019, 15, 771–775. [Google Scholar] [CrossRef]
  3. Chakraborty, D.; Grandadam, M.; Hamidian, M.H.; Davis, J.C.S.; Sidis, Y.; Pépin, C. Fractionalized pair density wave in the pseudo-gap phase of cuprate superconductors. arXiv 2019, arXiv:1906.01633. [Google Scholar]

Share and Cite

MDPI and ACS Style

Sacuto, A.; Loret, B.; Auvray, N.; Civelli, M.; Indranil, P.; Gallais, Y.; Cazayous, M.; Julien, M.-H.; Forget, A.; Colson, D. Energy Scale of the Charge Density Wave in Cuprate Superconductors. Proceedings 2019, 26, 20. https://doi.org/10.3390/proceedings2019026020

AMA Style

Sacuto A, Loret B, Auvray N, Civelli M, Indranil P, Gallais Y, Cazayous M, Julien M-H, Forget A, Colson D. Energy Scale of the Charge Density Wave in Cuprate Superconductors. Proceedings. 2019; 26(1):20. https://doi.org/10.3390/proceedings2019026020

Chicago/Turabian Style

Sacuto, Alain, Bastien Loret, Nicolas Auvray, Marcello Civelli, Paul Indranil, Yann Gallais, Maximilien Cazayous, Marc-Henri Julien, Anne Forget, and Dorothée Colson. 2019. "Energy Scale of the Charge Density Wave in Cuprate Superconductors" Proceedings 26, no. 1: 20. https://doi.org/10.3390/proceedings2019026020

Article Metrics

Back to TopTop