Quasi-Regression Monte-Carlo Method for Semi-Linear PDEs and BSDEs †
Abstract
:1. Introduction
2. Results
Algorithm 1. Global Quasi-Regression Multistep-forward Dynamical Programming (GQRMDP) algorithm |
|
3. Discussion
Conflicts of Interest
References
- NVIDIA cuRAND Web Page. Available online: https://developer.nvidia.com/curand (accessed on 5 October 2018).
- L’Ecuyer, P. Good parameters and implementations for combined multiple recursive random number generators. Oper. Res. 1999, 47, 159–164. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gobet, E.; Salas, J.G.L.; Vázquez, C. Quasi-Regression Monte-Carlo Method for Semi-Linear PDEs and BSDEs. Proceedings 2019, 21, 44. https://doi.org/10.3390/proceedings2019021044
Gobet E, Salas JGL, Vázquez C. Quasi-Regression Monte-Carlo Method for Semi-Linear PDEs and BSDEs. Proceedings. 2019; 21(1):44. https://doi.org/10.3390/proceedings2019021044
Chicago/Turabian StyleGobet, Emmanuel, José Germán López Salas, and Carlos Vázquez. 2019. "Quasi-Regression Monte-Carlo Method for Semi-Linear PDEs and BSDEs" Proceedings 21, no. 1: 44. https://doi.org/10.3390/proceedings2019021044
APA StyleGobet, E., Salas, J. G. L., & Vázquez, C. (2019). Quasi-Regression Monte-Carlo Method for Semi-Linear PDEs and BSDEs. Proceedings, 21(1), 44. https://doi.org/10.3390/proceedings2019021044