3. Results: Readiness Levels at the Demo-Sites
Table 2 shows that at both the English and French sites eventually the physical and technological challenges have been solved, while at the Italian and Romanian site some challenges have remained/have not all been solved. As for organizational readiness, that has been challenging at all the sites in different manners. And for market readiness, only in the UK there is a fully developed market for DR.
In terms of physical and technological readiness, it has become clear that not only the age of a building, but also its function affects how well DR can be implemented. University campuses as well as hospital areas often consist of a combination of old historic buildings and (sometimes very new and smart) buildings. TUCN in Romania provides an example of how the monumental status of a building can hinder possibilities for retrofitting. In such a situation, DR could be a way to contribute to overall BOB energy optimization. If the retrofitting of the older buildings is not a problem, then DR may not be a first logical step from the perspective of the building owner who might opt for energy efficiency measures first. Very new buildings can make DR easier to implement, in as far as the DR technologies are likely to be more compatible with new building installations compared to older installations in old buildings. Generally, older machines are not made for DR and they are not all equally suitable to participate. However, even in very new and smart buildings—e.g., in the case of the hospital in Brescia where energy-intensive critical medical interventions like surgery are performed in the smartest buildings—other considerations prevent opportunities for DR, when it is not allowed for safety reasons (or if it’s not (yet) economically feasible for these activities). Of course, the fact that these rules applied in the Italian hospital case does not mean that these rules apply similarly in other hospitals, but it is something to investigate when developing DR propositions specifically for hospital sites. The French case revealed how a set of buildings that is not yet physically or ICT connected can bring additional challenges, when these connections have to be physically developed, in agreement with (IT) management at all the buildings. Another issue that emerged is that different organisations will impose limits on the extent to which company-specific data are to be shared. At all sites there were challenges related in matching the DR BOB solution with the existing technological systems and in some cases additional costs were necessary to solve these. The French and UK sites have managed to solve these issues best, although it did result in project demonstration delays.
In terms of market readiness, the current situation and expectations with regard to future opportunities diverge. Only in the UK is explicit DR an option currently. However, at all demo-sites there is the expectation that both implicit and explicit DR will become an (easier) option. In Romania, main concerns are a lack of knowledge and competence that are needed to design and implement the necessary regulation, but there is little doubt that it will happen (the more since the current balancing approach is unsustainable both economically and ecologically). In Italy, one challenge that becomes clear from an experimental explicit DR programme relates to the fact that participating BOBs must guarantee a high minimum amount of flexibility loads which was not an option for the hospital in Brescia—due to the safety considerations. The French market offers opportunities for collecting the flexibility of several BOBs, and the same is already the case for the UK. And what became particularly clear from the Italian case is that as long as the value generated with participation in DR events is not tangible, responsiveness will be limited.
In terms of organisational readiness and user-related issues, several issues stand out. Organisational commitment differs at the different sites, but at all sites it became clear that organisational (energy-related) awareness is an essential condition to make DR work at a BOB for several reasons. Without organisational awareness and engagement, it is unlikely that current practices in scheduling, which at Teesside are highly inflexible and therewith also limit possibilities for participation in DR events, will change. Organisational commitment is also important to ensure that efforts done by the FM/EM/BM who are crucial to make DR work are seen and appreciated—e.g., by awarding them resources like extra time. But organisational commitment at the top and middle levels is also important as it gives expression to a culture and social norm towards building occupants who then may feel more engaged as well.
A major restriction on DR came from scheduling and operational restrictions—most clearly visible at the UK and Italian demo-sites. The timing of events generally was an issue at all the demo-sites, as well as the timing of the notifications about the events. Especially when active engagement of participants was asked for, timing of events sometimes was difficult not only because of potential disturbance for a large number of people (e.g., due to schedule changes) but also because of presence patterns (i.e., students and researchers working part-time) or tight schedules for doing experiments (no time to shift these activities).
The engagement of the BM/FM/EM is crucial to successful DR. These stakeholders act as gatekeepers, especially related to decisions to participate based on scheduling and comfort. They are responsible for the comfort in the buildings and their assessment affects their choice to opt-in or opt-out. They are also the ones that assess if a DR event is too much of a disturbance to ongoing core processes at the site. In the hospital environment, the considerations of the EM/FM/BM and control room people is somewhat different in that they always need to be prepared for emergency situations and they always need to be available—which means that participation in a DR event comes second. At the French site, having several part-time working BMs limited their availability and ability to manually participate in DR events.
Although not extensively investigated, it appeared that at all sites there were to some extent already comfort issues—comfort being perceived as falling short—which is likely to affect the willingness of building occupants to accept any further infringements.
The hierarchical lines of communication sometimes worked well to encourage people to actively participate in DR events, but this was not always equally appreciated (e.g., in the UK, having team leaders directly and personally approach employees to participate worked well; like in France when teachers asked their students to participate during class; but in Italy the employees did not like the mandatory shifting of activities during a DR event). In Romania, a peer-to-peer approach, whereby student leaders engaged their fellow students, worked quite well although keeping them engaged and committed was a challenge.
As a general observation, it has become clear that if higher management is not very aware of the potential benefits that DR can bring, or if it is absorbed by other priorities, it is difficult to get them really committed (even when they are sympathetic to DR and the DR BOB project). At the Italian site in particular it was emphasized that a lack of an energy awareness across the organisation and higher management undermines the likelihood of getting commitment from the part of the building occupants.
As for communication to building occupants, information overload and mistakes in communication were mentioned at both the French and Romanian sites as invoking annoyance among building occupants. The Italian site showed how information provision is restricted by organisational policies—e.g., prohibiting the use of social media like Whatsapp during work. Another limiting factor is that not all building occupants are seated behind their computers large part of the day so they need to be informed about DR events differently than by emails only (e.g., face-to-face).
At all demo-sites there were building occupants who were interested in receiving feedback on the impact of their participation. However, this information was not available. At the French site, the demo-site manager developed his own calculations to be able to provide such feedback, which was considered important to keep these people engaged.
As for the engagement of the demo-site managers themselves, their role turned out to be crucial at all sites as they fulfilled several roles at all demo-sites:
- ○
Support in the installing of the necessary software and hardware
- ○
Informing and checking regularly with BM, FM and EM—explaining the DR programmes, getting their commitment and support
- ○
Checking notifications and responses
- ○
Where needed forward notifications and messages around the DR events
- ○
Keeping BM, FM and EM motivated
- ○
Motivating building occupants and keeping them motivated.
When asking the demo-site managers who should take up this intermediary role in future DR BOB project, they considered the energy manager as the most suitable person to fulfil this role.
The demo-sites managers considered that the engagement of building occupants is important in order to achieve enhanced energy awareness, energy saving and efficiency behaviour—so from an energy efficiency point of view. They concluded that engaging building occupants in actively participating in DR is less relevant for future DR. This is because it took them quite some effort to reach the building occupants and to get them actively engaged, while at the same time the available loads were quite small. For DR in BOBs, a limited number of assets that have large capacity for delivering flexibility (alike industrial DR) is preferred over engaging a multitude of assets and their smaller loads if this means that the diverse users of these assets are to be actively engaged. The exception to this was the Romanian site where the coordinator was quite satisfied with results of the active participation of the students - in terms of peak time savings.