Early-Stage Damage Detection in Advanced Multifunctional Aerospace Composites Using Embedded Carbon Nanotubes and Flocked Carbon Fibers †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composite Coupon Fabrication
2.2. Electromechanical Characterization
3. Results and Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Hehr, A.; Schulz, M.; Shanov, V.; Song, Y. Embedded carbon nanotube thread piezoresistive strain sensor performance. Sensor Rev. 2014, 34, 209–219. [Google Scholar]
- Li, Z.; Dharap, P.; Nagarajaiah, S.; Barrera, E.V.; Kim, J.D. Carbon nanotube film sensors. Adv. Mater. 2004, 16, 640–643. [Google Scholar] [CrossRef]
- Li, X.; Levy, C.; Elaadil, L. Multiwalled Carbon Nanotube film for strain sensing. Nanotechnology 2008, 19, 045501. [Google Scholar] [CrossRef] [PubMed]
- Hehr, A.; Schulz, M.; Shanov, V.; Song, Y. Micro-crack detection and assessment with embedded carbon nanotube thread in composite materials. Struct. Health Monit. 2014, 13, 512–524. [Google Scholar] [CrossRef]
- Song, Y.; Hehr, A.; Shanov, V.; Alvarez, N.; Kienzle, N.; Cummins, J.; Koester, D.; Schulz, M. Carbon nanotube sensor thread for distributed strain and damage monitoring on IM7/977-3 composites. Smart Mater. Struct. 2014, 23, 075008. [Google Scholar] [CrossRef]
- Li, C.; Chou, T.-W. Modeling of damage sensing in fiber composites using carbon nanotube networks. Comps. Sci. Technol. 2008, 68, 3373–3379. [Google Scholar] [CrossRef]
- Park, J.-M.; Kim, D.-S.; Kim, S.-J.; Kim, P.-G.; Yoon, D.-J.; De Veries, K. L. Inherent sensing and interfacial evaluation of carbon nanofiber and nanotube/epoxy composites using resistance measurement and micromechanical technique. Compos. Part B 2007, 38, 847–861. [Google Scholar] [CrossRef]
- Saafi, M. Wireless and embedded carbon nanotube networks for damage detection in concrete structures. Nanotechnology 2009, 20, 395502. [Google Scholar] [CrossRef] [PubMed]
- Loh, K.J.; Kim, J.; Lynch, J.P.; Kam, N.W.S.; Kotov, N. Multifunctional layer-by-layer CNT-polyelectrolyte thin films for strain and corrosion sensing. Smart Mater. Struct. 2007, 16, 429. [Google Scholar] [CrossRef]
- Alexopoulos, N.D.; Jaillet, C.; Zakri, C.; Poulin, P.; Kourkoulis, S.K. Improved strain sensing performance of glass fiber polymer composites with embedded pre-stretched polyvinyl alcohol–carbon nanotube fibers. Carbon 2013, 59, 65–75. [Google Scholar] [CrossRef]
- Sebastian, J.; Schehl, N.; Bouchard, M.; Boehle, M.; Li, L.; Lagounov, A.; Lafdi, K. Health monitoring of structural composites with embedded carbon nanotube coated glass fiber sensors. Carbon 2014, 66, 191–200. [Google Scholar] [CrossRef]
- Zhang, R.; Deng, H.; Valenca, R.; Jin, J.; Fu, Q.; Bilotti, E.; Peijis, T. Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading. Compos. Sci. Technol. 2013, 74, 1–5. [Google Scholar] [CrossRef]
- De la Vega, A.; Sumfleth, J.; Wittich, H.; Schulte, K. Time and temperature dependent piezoresistance of carbon nanofiller/polymer composites under dynamic load. J. Mater. Sci. 2012, 47, 2648–2657. [Google Scholar] [CrossRef]
- Zetina-Hernández, O.; Duarte-Aranda, S.; May-Pat, A.; Canché-Escamilla, G.; Uribe-Calderon, J.; Gonzalez-Chi, P.I.; Avilés, F. Coupled electro-mechanical properties of multiwall carbon nanotube/polypropylene composites for strain sensing applications. J. Mater. Sci. 2013, 48, 7587–7593. [Google Scholar] [CrossRef]
- Cardoso, S.M.; Chalivendra, V.B.; Shukla, A.; Yang, S. Damage detection of rubber toughened nanocomposites in the fracture process zone using carbon nanotubes. Eng. Fract. Mech. 2012, 96, 380–391. [Google Scholar] [CrossRef]
- Pinto, M.; Chalivendra, V.B.; Kim, Y.K.; Lewis, A. Effect of Surface Treatment and Z-axis Reinforcement on the Interlaminar Fracture of Jute/Epoxy Laminated Composites. Eng. Fract. Mech. 2013, 114, 104–114. [Google Scholar] [CrossRef]
- Yang, S.; Chalivendra, V.B.; Kim, Y.K. Fracture and impact characterization of novel auxetic Kevlar/Epoxy laminated composites. Compos. Struct. 2017, 168, 120–129. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nataraj, L.; Coatney, M.; Hall, A.; Haile, M.; Sherman, R.; O’Donnell, J.; Chalivendra, V. Early-Stage Damage Detection in Advanced Multifunctional Aerospace Composites Using Embedded Carbon Nanotubes and Flocked Carbon Fibers. Proceedings 2018, 2, 490. https://doi.org/10.3390/ICEM18-05386
Nataraj L, Coatney M, Hall A, Haile M, Sherman R, O’Donnell J, Chalivendra V. Early-Stage Damage Detection in Advanced Multifunctional Aerospace Composites Using Embedded Carbon Nanotubes and Flocked Carbon Fibers. Proceedings. 2018; 2(8):490. https://doi.org/10.3390/ICEM18-05386
Chicago/Turabian StyleNataraj, Latha, Michael Coatney, Asha Hall, Mulugeta Haile, Riley Sherman, Jacob O’Donnell, and Vijaya Chalivendra. 2018. "Early-Stage Damage Detection in Advanced Multifunctional Aerospace Composites Using Embedded Carbon Nanotubes and Flocked Carbon Fibers" Proceedings 2, no. 8: 490. https://doi.org/10.3390/ICEM18-05386
APA StyleNataraj, L., Coatney, M., Hall, A., Haile, M., Sherman, R., O’Donnell, J., & Chalivendra, V. (2018). Early-Stage Damage Detection in Advanced Multifunctional Aerospace Composites Using Embedded Carbon Nanotubes and Flocked Carbon Fibers. Proceedings, 2(8), 490. https://doi.org/10.3390/ICEM18-05386