Multi-Body Ski Jumper Model with Nonlinear Dynamic Inversion Muscle Control for Trajectory Optimization †
Abstract
1. Introduction
2. Multi-Body Model
3. Nonlinear Dynamic Inversion
4. Optimal Control
5. Illustrative Example
6. Conclusions and Perspective
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Leitner, R.; Koppitz, P. Quick Modeling of Fixed- and Rotary-Wing Aircrafts using a synthetic tree structured Multibody Approach. In Proceedings of the AIAA Modeling and Simulation Technologies Conference, Minneapolis, MN, USA, 13–16 August 2012. [Google Scholar]
- Stevens, B.L.; Lewis, F.L. Aircraft Control and Simulation, 2nd ed.; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Peter, F.; Leitao, M.; Holzapfel, F. Adaptive Augmentation of a New Baseline Control Architecture for Tail-Controlled Missiles Using a Nonlinear Reference Model. In Proceedings of the AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, USA, 13–16 August 2012. [Google Scholar]
- Straumann, R. Vom Ski-Weitsprung und seiner Mechanik. Ski: Jahrbuch des Schweizerischen Ski-Verbandes = Annuaire de l’Association Suisse des Clubs de Ski; Volume 21, p. 1926.
- Seo, K.; Murakami, M.; Yoshida, K. Optimal flight technique for V-style ski jumping. Sports Eng. 2004, 7, 97–103. [Google Scholar] [CrossRef]
- Hubbard, M.; Hibbard, R.L.; Yeadon, M.R.; Komor, A. A multisegment dynamic model of ski jumping. J. Appl. Biomech. 1989, 5, 258–274. [Google Scholar] [CrossRef][Green Version]
- Hermsdorf, H.; Hildebrand, F.; Hofmann, N.; Müller, S. JUMPICUS—Computer Simulation in Ski Jumping (P95). In The Engineering of Sport 7; Estivalet, M., Brisson, P., Eds.; Springer: Paris, Germany, 2008; Volume 1, pp. 491–497. [Google Scholar]
- Rieck, M.; Bittner, M.; Grüter, B.; Diepolder, J. Fast and Free Optimal Control for MATLAB®. Available online: http://www.fsd.mw.tum.de/software/falcon-m/ (accessed on 22 May 2016).
- De Leva, P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 1996, 29, 1223–1230. [Google Scholar] [CrossRef]
- Meile, W.; Reisenberger, E.; Mayer, M.; Schmolzer, B.; Muller, W.; Brenn, G. Aerodynamics of ski jumping: Experiments and CFD simulations. Exp. Fluids 2006, 41, 949–964. [Google Scholar] [CrossRef]
- Seo, K.; Watanabe, I.; Murakami, M. Aerodynamic force data for a V-style ski jumping flight. Sports Eng. 2004, 7, 31–39. [Google Scholar] [CrossRef]
- Hill, A.V. The Heat of Shortening and the Dynamic Constants of Muscle. Proc. R. Soc. Lond. B Biol. Sci. 1938, 126, 136–195. [Google Scholar]
- Günther, M. Computersimulationen zur Synthetisierung des Muskulär Erzeugten Menschlichen Gehens Unter Verwendung Eines Biomechanischen Mehrkörpermodells. Dissertation, Eberhard-Karls-Universität, 1997. [Google Scholar]
- Van Soest, A.J.; Bobbert, M.F. The contribution of muscle properties in the control of explosive movements. Biol. Cybern. 1993, 69, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Gordon, A.M.; Huxley, A.F.; Julian, F.J. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 1966, 184, 170–192. [Google Scholar] [CrossRef] [PubMed]
- Diepolder, J.; Bittner, M.; Piprek, P.; Grüter, B.; Holzapfel, F. Facilitating aircraft optimal control based on numerical nonlinear dynamic inversion. In Proceedings of the 2017 25th Mediterranean Conference on Control and Automation (MED), Valletta, Malta, 3–6 July 2017; pp. 141–146. [Google Scholar]
- Betts, J.T. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2010. [Google Scholar]
- Wächter, A.; Biegler, L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 2006, 106, 25–57. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piprek, P.; Glas, F.; Fang, X.; Bessone, V.; Petrat, J.; Bittner, M.; Holzapfel, F. Multi-Body Ski Jumper Model with Nonlinear Dynamic Inversion Muscle Control for Trajectory Optimization. Proceedings 2018, 2, 321. https://doi.org/10.3390/proceedings2060321
Piprek P, Glas F, Fang X, Bessone V, Petrat J, Bittner M, Holzapfel F. Multi-Body Ski Jumper Model with Nonlinear Dynamic Inversion Muscle Control for Trajectory Optimization. Proceedings. 2018; 2(6):321. https://doi.org/10.3390/proceedings2060321
Chicago/Turabian StylePiprek, Patrick, Franziska Glas, Xiang Fang, Veronica Bessone, Johannes Petrat, Matthias Bittner, and Florian Holzapfel. 2018. "Multi-Body Ski Jumper Model with Nonlinear Dynamic Inversion Muscle Control for Trajectory Optimization" Proceedings 2, no. 6: 321. https://doi.org/10.3390/proceedings2060321
APA StylePiprek, P., Glas, F., Fang, X., Bessone, V., Petrat, J., Bittner, M., & Holzapfel, F. (2018). Multi-Body Ski Jumper Model with Nonlinear Dynamic Inversion Muscle Control for Trajectory Optimization. Proceedings, 2(6), 321. https://doi.org/10.3390/proceedings2060321