On the Effects of Tube Butting on the Structural Performance of Steel Bicycle Frames †
Abstract
:1. Introduction
2. Methods
2.1. Model 1—Finite Element Model of a Single Joint
2.2. Model 2—Finite Element Model of a Whole Frame Assembly
3. Results and Discussion
4. Conclusions
Conflicts of Interest
References
- Paulus, J. Designing the Ultimate Bicycle, Presentation: Bespoked Bristol. 7 April 2017. [Google Scholar]
- Soden, P.; Millar, M.; Adefeya, B.; Wong, Y. Loads, stresses and deflections in bicycle frames. J. Strain Anal. 1986, 21, 185–195. [Google Scholar] [CrossRef]
- Peterson, L.; Londry, K.; A New Tool for Bicycle Frame Design: The Strain Energy Design Method. In Bike Tech: Bicycling Magazine's Newsletter for the Technical Enthusiast; 1986. Available online: https://www.sheldonbrown.com/rinard/fea.htm (accessed on 1 August 2017).
- Hull, M.; Bolourchi, F. Contributions of rider-induced loads to bicycle frame stress. J. Strain Anal. 1988, 23, 105–114. [Google Scholar] [CrossRef]
- Lessard, L.; Nemes, J.; Lizotte, P. Utilization of FEA in the design of composite bicycle. Composites 1995, 26, 72–74. [Google Scholar] [CrossRef]
- Maestrelli, L.; Falsini, A. Bicycle frame optimization by means of an advanced gradient method algorithm. In Proceedings of the 2nd European HTC, Strasbourg, France, 30 September–1 October 2008. [Google Scholar]
- Finn, J. Application of optimisation tools to the design of advanced carbon fibre bicycle: Factor 001. In Proceedings of 6th Altair CAE Technology Conference, Warwickshire, UK, 14 April 2009. [Google Scholar]
- Liu, T.; Wu, H. Fiber direction and stacking sequence design for bicycle frame made of carbon/epoxy composite laminate. Mater. Des. 2010, 31, 1971–1980. [Google Scholar] [CrossRef]
- Reynolds Technology Ltd. eReynolds Manual for eReynolds Software; Provided by Reynolds Technology through Correspondence; Reynolds Technology Ltd.: Birmingham, UK, 2011. [Google Scholar]
- Callens, A.; Bignonnet, A. Fatigue design of welded bicycle frames using multiaxial criterion. Procedia Eng. 2012, 24, 640–645. [Google Scholar] [CrossRef]
- Dwyer, F.; Shaw, A.; Tombarelli, R. Material and Design Optimization for an Aluminium Bike Frame. BSc Project Thesis, Worcester Polytechnic Institute, Worcester, MA, USA, 2012. [Google Scholar]
- Miles, P.; Archibald, M. Experimental investigation of bicycle frame FEA models. In Proceedings of the IMECE, San Diego, CA, USA, 15–21 November 2013. [Google Scholar]
- Covill, D.; Begg, S.; Elton, E.; Milne, M.; Morris, M.; Katz, T. Parametric finite element analysis of bicycle frame geometries. Procedia Eng. 2014, 72, 441–446. [Google Scholar] [CrossRef]
- Daugherty, C.; Follstaedt, G.; Archibald, M. Light Alternative Vehicle Frame Fatigue Failure prediciton and prevention. In Proceedings of the ASEE Conference, Indianapolis, IN, USA, 15–18 June 2014. [Google Scholar]
- Covill, D.; Blayden, A.; Coren, D.; Begg, S. Parametric finite element analysis of steel bicycle frames: The influence of tube selection on frame stiffness. Procedia Eng. 2015, 112, 34–39. [Google Scholar] [CrossRef]
- Tayade, B.; Deshmukh, T. A comparative study on structural health of bicycle frame using finite element analysis—A review. Int. J. Pure Appl. Res. Eng. Technol. 2015, 3, 176–183. [Google Scholar]
- Covill, D.; Allard, P.; Drouet, J.-M.; Emerson, N. An assessment of bicycle frame behaviour under various load conditions using numerical simulations. Procedia Eng. 2016, 147, 665–670. [Google Scholar] [CrossRef]
- Colins, P.; Leen, R.; Gibson, I. Industry case study: Rapid prototype of mountain bike frame section. Virtual Phys. Prototyp. 2016, 11, 295–303. [Google Scholar] [CrossRef]
- Brown, B. Engineering: Material Myths. 2007. Available online: http://www.bobbrowncycles.com/eng.htm (accessed on 1 August 2017).
- Tange International Ltd. Available online: https://www.tange-design.com/tubing_list.php (accessed on 1 August 2017).
- True Temper Sports. Available online: http://www.henryjames.com (accessed on 1 August 2017).
- Columbus Tubing Catalogue. Available online: http://www.columbustubi.com/pdf/Columbus-Tubi-2017-Catalogue-V2.pdf (accessed on 1 August 2017).
- Reynolds technology Ltd. Cycle Frame Tube Price List; Reynolds Technology Ltd.: Birmingham, UK, 2015. [Google Scholar]
- Strong Frames Custom Bicycles. Bicycle Frame Tube Information. Available online: http://www.strongframes.com/tubing-information/ (accessed on 1 August 2017).
- Abambres, M.; Arruda, M. Finite element analysis of steel structures—A review of useful guidelines. Int. J. Struct. Integr. 2016, 7, 490–515. [Google Scholar] [CrossRef]
Tube | Length (mm) | OD (mm) | Example Wall Thicknesses (mm) | Butting Options | Profile Options |
---|---|---|---|---|---|
Down/top tubes | 570–780 | 25.4–44.5 | 0.5/0.3/0.5; 0.8/0.5/0.8; 1/0.7/1 | Double, triple, | Round, teardrop |
Seat tube | 225–750 | 28.0–35.0 | 0.6/0.4/0.5; 0.9/0.6/1.2; 0.8/1.3 | Single, double, external | Round |
Head tube | 240–1525 | 31.8–56.0 | 0.8, 0.9, 1, 1.25, 1.6 | Straight, tapered | Round |
Seat stay | 375–600 | 12.8–19 | 0.5, 0.6, 0.7, 0.8, 0.9 | Single taper, double taper, teardrop, “s” bend, biconical | Round, aero |
Chain stay | 360–472 | 22–30 | 0.51, 0.76/0.56, 0.9/0.76, 1, 1.1/0.8, 1.2/0.7, 1.25 | “s” bend, ≤17.5° bend | Round, oval |
Reynolds (UK) | UTS (MPa) | Columbus (Italy) | UTS (MPa) | True Temper (USA) | UTS (MPa) | Tange (Taiwan) | UTS (MPa) |
---|---|---|---|---|---|---|---|
953 | 1750–2050 | XCr | 1250–1350 | S3 | 1034–1496 | Prestige | 1235 |
853 | 1250–1400 | Niobium | 1050–1150 | OX platinum | 930–1275 | Infinity | 894 |
931 | 1200–1350 | 25CrMo4 | 800 | Verus (HT) | 1034–1206 | ||
725 | 1080 | Cromor | 750 | Verus 4130 | 758 | ||
921, 631, 525, 531 | ≤1000 |
Straight Gauge LMC (0.5 mm Wall Thickness) | Straight Gauge MMC (0.8 mm Wall Thickness) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Model | Loading Type | Δk % (Δk/Δm) | Δσ % (Δσ/Δm) | ΔU % (ΔU/Δm) | Δm % (mass kg) | Δk % (Δk/Δm) | Δσ % (Δσ/Δm) | ΔU % (ΔU/Δm) | Δm % (mass kg) |
Model 1: single joint | Bending | −17.8 (0.9) | +67.7 (3.3) | +23.4 (1.1) | −20.7 (0.281 kg) | +21.9 (0.9) | −16.2 (0.6) | −20.0 (0.8) | +25.6 (0.444 kg) |
Torsion | −27.0 (1.3) | +47.7 (2.3) | +18.4 (0.9) | +12.6 (0.5) | +1.9 (0.1) | −23.3 (0.9) | |||
Model 2: whole frame | Bending | −13.3 (2.2) | +39.3 (6.6) | +27.1 (4.5) | −6.0 (2.06 kg) | +25.7 (2.2) | 0 (0.0) | −20.1 (1.7) | +11.6 (2.44 kg) |
Torsion | −9.4 (1.6) | +41.2 (6.9) | +19.4 (3.2) | +11.1 (1.0) | −0.6 (0.1) | −18.7 (1.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Covill, D.; Drouet, J.-M. On the Effects of Tube Butting on the Structural Performance of Steel Bicycle Frames. Proceedings 2018, 2, 216. https://doi.org/10.3390/proceedings2060216
Covill D, Drouet J-M. On the Effects of Tube Butting on the Structural Performance of Steel Bicycle Frames. Proceedings. 2018; 2(6):216. https://doi.org/10.3390/proceedings2060216
Chicago/Turabian StyleCovill, Derek, and Jean-Marc Drouet. 2018. "On the Effects of Tube Butting on the Structural Performance of Steel Bicycle Frames" Proceedings 2, no. 6: 216. https://doi.org/10.3390/proceedings2060216
APA StyleCovill, D., & Drouet, J. -M. (2018). On the Effects of Tube Butting on the Structural Performance of Steel Bicycle Frames. Proceedings, 2(6), 216. https://doi.org/10.3390/proceedings2060216