New Surprises from an Old Anti-Apoptotic Gene: Pleiotropic Effects of PPAR-Α Variants in a Hematologic Disorder †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Acknowledgments
Conflicts of Interest
References
- Galanello, R.; Origa, R.; Orphanet, J. Beta-thalassemia. Orphanet J. Rare Dis. 2010, 21, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Modell, B.; Berdoukas, V. Thalassaemia in Cyprus. In The Clinical Approaches to Thalassaemia; Modell, B., Ed.; Grune & Stratton: London, UK, 1984; pp. 263–277. [Google Scholar]
- Calandra, S.; Bertolini, S.; Pes, G.M.; Deiana, L.; Tarugi, P.; Pisciotta, L.; Li Volti, S.; Li Volti, G.; Maccarone, C. Beta-thalassemia is a modifying factor of the clinical expression of familial hypercholesterolemia. Semin. Vasc. Med. 2004, 4, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, A.W.; Rachmilewitz, E.A.; Eisenberg, S. Abnormal low- and high-density lipoproteins in homozygous beta thalassemia. Br. J. Haematol. 2000, 79, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.K. Peroxisome Proliferator-Activated Receptors Protect against Apoptosis via 14-3-3. PPAR Res. 2010. [Google Scholar] [CrossRef] [PubMed]
- Flavell, D.M.; Jamshidi, Y.; Hawe, E.; Pineda Torra, I.; Taskinen, M.R.; Frick, M.H.; Nieminen, M.S.; Kesäniemi, Y.A.; Pasternack, A.; Staels, B.; et al. Peroxisome proliferator-activated receptor α gene variants influence progression of coronary atherosclerosis and risk of coronary artery disease. Circulation 2002, 105, 1440–1445. [Google Scholar] [CrossRef] [PubMed]
- Cherchi, G.M.; Boggi, M.A.; Coinu, R. Post-heparin lipase activity in beta-thalassemia major: Prelimineryt data. Boll. Soc. Ital. Biol. Sper. 1984, 59, 1739–1743. [Google Scholar]
- Ergören, M.Ç.; Teralı, K. Assessment of the Association Between Three Perplexing PPARA Gene Polymorphisms and the Risk of Coronary Artery Disease in a Population of Turkish Cypriot Women. Cyprus J. Med. Sci. 2018, 3, 75–80. [Google Scholar] [CrossRef]
Clinical Parameters | rs4253778 C > G | ANOVA p Value | ||
---|---|---|---|---|
TM | GG | GC | CC | |
Glucose (mg/dL) | 130.0 ± 74.9 | 114.3 ± 36.7 | 101.5 ± 7.7 | 0.673 (95%CI: 100.4–142.3) |
Cholestrol (mg/dL) | 156.0 ± 39.7 | 143.6 ± 22.6 | 180.0 ± 73.5 | 0.339 (95%CI: 141.9–164.0) |
HDL-C (mg/dL) | 32.6 ± 10.1 | 30.5 ± 7.6 | 21.5 ± 9.1 | 0.256 (95%CI: 28.5–34.2) |
LDL-C (mg/dL) | 89.0 ± 34.7 | 84.2 ± 22.8 | 72.2 ± 19.8 | 0.713 (95%CI: 77.4–95.7) |
Triglyceride (mg/dL) | 179.0 ± 102.2 | 154.7 ± 70.6 | 431.5 ± 512.6 | 0.017 (95%CI: 142.7–223.0) |
Clinical Parameters | ANOVA p value | |||
TI | GG | GC | CC | |
Glucose (mg/dL) | 104.0 ± 30.7 | 86.6 ± 10.8 | 90.5 ± 7.7 | 0.233 (95%CI: 86.0–105.1) |
Cholestrol (mg/dL) | 154.6 ± 40.0 | 127.5 ± 36.1 | 124.0 ± 226 | 0.207 (95%CI: 126.0–156.5) |
HDL-C (mg/dL) | 28.0 ± 8.6 | 28.0 ± 6.0 | 24.5 ± 0.7 | 0.812 (95%CI: 24.9–30.4) |
LDL-C (mg/dL) | 91.9 ± 1.2 | 69.5 ± 8.5 | 58.2 ± 4.6 | 0.167 (95%CI: 52.6–106.9) |
Triglyceride (mg/dL) | 165.0 ± 70.1 | 146.9 ± 60.8 | 206.5 ± 149.1 | 0.045 (95%CI: 133.3–188.8) |
Clinical Parameters | rs4253778 C>G | ANOVA p value | ||
TT | GG | GC | CC | |
Glucose (mg/dL) | 90.4 ± 7.0 | 95.4 ± 14.1 | 105.0 ± 7.0 | 0.149 (95%CI: 88.9–106.6) |
Cholestrol (mg/dL) | 205.7 ± 54.2 | 199.0 ± 45.1 | 179.5 ± 10.6 | 0.780 (95%CI: 178.2–222.3) |
HDL-C (mg/dL) | 31.6 ± 5.8 | 29.7± 3.5 | 32.5 ± 2.3 | 0.796 (95%CI: 29.0–33.5) |
LDL-C (mg/dL) | 90.4 ± 18.4 | 78.5 ± 5.3 | 82.5 ± 3.5 | 0.321 (95%CI: 77.1–91.0) |
Triglyceride (mg/dL) | 105.5 ± 37.8 | 133.2 ± 20.1 | 135 ± 0 7.0 | 0.228 (95%CI: 101.2–136.2) |
Clinical Parameters | ANOVA p value | |||
Control | GG | GC | CC | |
Glucose (mg/dL) | 99.5 ± 36.6 | 94.6 ± 12.4 | 94.5 ± 20.5 | 0.861 (95%CI: 89.8–105.9) |
Cholestrol (mg/dL) | 193.9 ± 45.5 | 182.9 ± 52.2 | 195.0 ± 49.4 | 0.749 (95%CI: 178.8–203.4) |
HDL-C (mg/dL) | 36.0± 9.1 | 31.0± 4.7 | 29.3± 2.32 | 0.190 (95%CI: 28.4–36.5) |
LDL-C (mg/dL) | 94.8 ± 29.8 | 92.4 ± 17.5 | 88.6 ± 31.7 | 0.861 (95%CI: 86.2–100.5) |
Triglyceride (mg/dL) | 102.6 ± 37.2 | 111.1 ± 50.1 | 129.0 ± 57.9 | 0.597 (95%CI: 94.3–117.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ergoren, M.C. New Surprises from an Old Anti-Apoptotic Gene: Pleiotropic Effects of PPAR-Α Variants in a Hematologic Disorder. Proceedings 2018, 2, 1549. https://doi.org/10.3390/proceedings2251549
Ergoren MC. New Surprises from an Old Anti-Apoptotic Gene: Pleiotropic Effects of PPAR-Α Variants in a Hematologic Disorder. Proceedings. 2018; 2(25):1549. https://doi.org/10.3390/proceedings2251549
Chicago/Turabian StyleErgoren, Mahmut Cerkez. 2018. "New Surprises from an Old Anti-Apoptotic Gene: Pleiotropic Effects of PPAR-Α Variants in a Hematologic Disorder" Proceedings 2, no. 25: 1549. https://doi.org/10.3390/proceedings2251549
APA StyleErgoren, M. C. (2018). New Surprises from an Old Anti-Apoptotic Gene: Pleiotropic Effects of PPAR-Α Variants in a Hematologic Disorder. Proceedings, 2(25), 1549. https://doi.org/10.3390/proceedings2251549