Ubiquitous Assessment of the Recovery of Cancer Patients Using Consumer-Level Activity Trackers †
Abstract
:1. Introduction
2. State of the Art
2.1. Fitbit’s Steps Count
2.2. Fitbit’s Energy Expenditure & Physical Activity Levels
2.3. Fitbit’s Heart Rate & Sleep Tracking
3. System Design
3.1. Data Sources
3.2. Data Security
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Yates, J.W.; Chalmer, B.; McKegney, F.P. Evaluation of patients with advanced cancer using the karnofsky performance status. Cancer 1980, 45, 2220–2224. [Google Scholar] [CrossRef]
- Zubrod, C.G.; Schneiderman, M.; Frei, E.; Brindley, C.; Lennard Gold, G.; Shnider, B.; Oviedo, R.; Gorman, J.; Jones, R.; Jonsson, U.; et al. Appraisal of methods for the study of chemotherapy of cancer in man: Comparative therapeutic trial of nitrogen mustard and triethylene thiophosphoramide. J. Chron. Dis. 1960, 11, 7–33. [Google Scholar] [CrossRef]
- Karnofsky, D.; Burchenal, J. The clinical evaluation of chemotherapeutic agents in cancer. In Evaluation of Chemotherapeutic Agents; Columbia Univ. Press: New York, NY, USA, 1949; pp. 191–205. [Google Scholar]
- Beg, M.S.; Gupta, A.; Stewart, T.; Rethorst, C.D. Promise of Wearable Physical Activity Monitors in Oncology Practice. J. Oncol. Pract. 2017, 13, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.M.; Shahrokni, A. Moving beyond Karnofsky and ECOG Performance Status Assessments with New Technologies. J. Oncol. 2016, 2016, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ferriolli, E.; Skipworth, R.J.E.; Hendry, P.; Scott, A.; Stensteth, J.; Dahele, M.; Wall, L.; Greig, C.; Fallon, M.; Strasser, F.; et al. Physical Activity Monitoring: A Responsive and Meaningful Patient-Centered Outcome for Surgery, Chemotherapy, or Radiotherapy? J. Pain Symp. Manag. 2012, 43, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- Gresham, G.; Schrack, J.; Gresham, L.M.; Shinde, A.M.; Hendifar, A.E.; Tuli, R.; Rimel, B.J.; Figlin, R.; Meinert, C.L.; et al. Wearable activity monitors in oncology trials: Current use of an emerging technology. Contemp. Clin. Trials 2018, 64, 13–21. [Google Scholar] [CrossRef]
- Hartman, S.J.; Nelson, S.H.; Weiner, L.S. Patterns of Fitbit Use and Activity Levels Throughout a Physical Activity Intervention: Exploratory Analysis from a Randomized Controlled Trial. JMIR mHealth uHealth 2018, 6, e29. [Google Scholar] [CrossRef]
- Redman, L.M.; Gilmore, L.A.; Breaux, J.; Thomas, D.M.; Elkind-Hirsch, K.; Stewart, T.; Hsia, D.S.; Burton, J.; Apolzan, J.W.; Cain, L.E.; et al. Effectiveness of SmartMoms, a Novel eHealth Intervention for Management of Gestational Weight Gain: Randomized Controlled Pilot Trial. JMIR mHealth uHealth 2017, 5, e133. [Google Scholar] [CrossRef]
- Coughlin, S.S.; Hatzigeorgiou, C.; Anglin, J.; Xie, D.; Besenyi, G.M.; De Leo, G.; Stewart, J.; Wilkins, T. Healthy lifestyle intervention for adult clinic patients with type 2 diabetes mellitus. Diabetes Manag. Lond. Engl. 2017, 7, 197–204. [Google Scholar]
- Dondzila, C.J.; Lewis, C.A.; Lopez, J.R.; Parker, T.M. Congruent Accuracy of Wrist-worn Activity Trackers during Controlled and Free-living Conditions. Int. J. Exerc. Sci. 2018, 11, 575–584. [Google Scholar]
- Blarigan, E.L.V.; Kenfield, S.A.; Tantum, L.; Cadmus-Bertram, L.A.; Carroll, P.R.; Chan, J.M. The Fitbit One Physical Activity Tracker in Men With Prostate Cancer: Validation Study. JMIR Cancer 2017, 3, e5. [Google Scholar] [CrossRef] [PubMed]
- Dominick, G.M.; Winfree, K.N.; Pohlig, R.T.; Papas, M.A. Physical Activity Assessment Between Consumer- and Research-Grade Accelerometers: A Comparative Study in Free-Living Conditions. JMIR mHealth uHealth 2016, 4, e110. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Welk, G.J.; Nam, Y.H.; Lee, J.A.; Lee, J.M.; Kim, Y.; Meier, N.F.; Dixon, P.M. Comparison of Consumer and Research Monitors under Semistructured Settings. Med. Sci. Sports Exerc. 2016, 48, 151. [Google Scholar] [CrossRef] [PubMed]
- Moreno, S.; Damas, M.; Pomares, H.; Moral-Munoz, J.A.; Banos, O. First Approach to Automatic Performance Status Evaluation and Physical Activity Recognition in Cancer Patients. In 2016 15th International Conference on Ubiquitous Computing and Communications and 2016 8th International Symposium on Cyberspace and Security (IUCC-CSS); IEEE: Piscataway, NJ, USA, 2016; pp. 116–123. [Google Scholar]
- Nyrop, K.A.; Deal, A.M.; Choi, S.K.; Wagoner, C.W.; Lee, J.T.; Wood, A.; Anders, C.; Carey, L.A.; Dees, E.C.; Jolly, T.A.; et al. Measuring and understanding adherence in a home-based exercise intervention during chemotherapy for early breast cancer. Breast Cancer Res. Treat. 2018, 168, 43–55. [Google Scholar] [CrossRef]
- Feehan, L.M.; Geldman, J.; Sayre, E.C.; Park, C.; Ezzat, A.M.; Yoo, J.Y.; Hamilton, C.B.; Li, L.C. Accuracy of Fitbit Devices: Systematic Review and Narrative Syntheses of Quantitative Data. JMIR mHealth uHealth 2018, 6, e10527. [Google Scholar] [CrossRef]
- Tudor-Locke, C.; Bassett, D.R., Jr. How many steps/day are enough? Sports Med. 2004, 34, 1–8. [Google Scholar] [CrossRef]
- Reid, R.E.R.; Insogna, J.A.; Carver, T.E.; Comptour, A.M.; Bewski, N.A.; Sciortino, C.; Andersen, R.E. Validity and reliability of Fitbit activity monitors compared to ActiGraph GT3X+ with female adults in a free-living environment. J. Sci. Med. Sport 2017, 20, 578–582. [Google Scholar] [CrossRef]
- Ummels, D.; Beekman, E.; Theunissen, K.; Braun, S.; Beurskens, A.J. Counting Steps in Activities of Daily Living in People With a Chronic Disease Using Nine Commercially Available Fitness Trackers: Cross-Sectional Validity Study. JMIR mHealth uHealth 2018, 6, e70. [Google Scholar] [CrossRef]
- Alharbi, M.; Bauman, A.; Neubeck, L.; Gallagher, R. Validation of Fitbit-Flex as a measure of free-living physical activity in a community-based phase III cardiac rehabilitation population. Eur. J. Prev. Cardiol. 2016, 23, 1476–1485. [Google Scholar] [CrossRef]
- Diaz, K.M.; Krupka, D.J.; Chang, M.J.; Peacock, J.; Ma, Y.; Goldsmith, J.; Schwartz, J.E.; Davidson, K.W. Fitbit®: An accurate and reliable device for wireless physical activity tracking. Int. J. Cardiol. 2015, 185, 138–140. [Google Scholar] [CrossRef]
- Winfree, K.N.; Dominick, G. Modeling Clinically Validated Physical Activity Assessments Using Commodity Hardware. IEEE J. Biomed. Health Inform. 2018, 22, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Thiebaud, R.S.; Funk, M.D.; Patton, J.C.; Massey, B.L.; Shay, T.E.; Schmidt, M.G.; Giovannitti, N. Validity of wrist-worn consumer products to measure heart rate and energy expenditure. Digit. Health 2018, 4, 2055207618770322. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno, S.; Damas, M.; Rojas, I.; Amezcua, V.; Gutierrez-Pastor, P.; Banos, O. Ubiquitous Assessment of the Recovery of Cancer Patients Using Consumer-Level Activity Trackers. Proceedings 2018, 2, 1204. https://doi.org/10.3390/proceedings2191204
Moreno S, Damas M, Rojas I, Amezcua V, Gutierrez-Pastor P, Banos O. Ubiquitous Assessment of the Recovery of Cancer Patients Using Consumer-Level Activity Trackers. Proceedings. 2018; 2(19):1204. https://doi.org/10.3390/proceedings2191204
Chicago/Turabian StyleMoreno, Salvador, Miguel Damas, Ignacio Rojas, Victor Amezcua, Pilar Gutierrez-Pastor, and Oresti Banos. 2018. "Ubiquitous Assessment of the Recovery of Cancer Patients Using Consumer-Level Activity Trackers" Proceedings 2, no. 19: 1204. https://doi.org/10.3390/proceedings2191204
APA StyleMoreno, S., Damas, M., Rojas, I., Amezcua, V., Gutierrez-Pastor, P., & Banos, O. (2018). Ubiquitous Assessment of the Recovery of Cancer Patients Using Consumer-Level Activity Trackers. Proceedings, 2(19), 1204. https://doi.org/10.3390/proceedings2191204