An R Package Implementation for Statistical Modeling of Emergence Curves in Weed Science †
Abstract
:1. Scenario
2. Bandwidth Selection for Interval-Grouped Data
3. Application to the Estimation of Seedling Emergence Curves
4. Implementation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reyes, M.; Francisco-Fernández, M.; Cao, R. Nonparametric kernel density estimation for general grouped data. J. Nonparametr. Stat. 2016, 2, 235–249. [Google Scholar] [CrossRef]
- Cao, R.; Francisco-Fernández, M.; Anand, A.; Bastida, F.; González-Andújar, J.L. Modeling bromus diandrus seedling emergence using nonparametric estimation. J. Agric. Biol. Environ. Stat. 2013, 18, 64–86. [Google Scholar] [CrossRef]
- Reyes, M.A. Statistical Methods for Studying Emergence Curves in Weed Science. Ph.D. Thesis, Universidade da Coruña, A Coruña, Spain, 2015. [Google Scholar]
- Cao, R.; Francisco-Fernández, M.; Anand, A.; Bastida, F.; González-Andújar, J.L. Computing statistical indices for hydrothermal times using weed emergence data. J. Agric. Biol. Environ. Stat. 2011, 149, 701–712. [Google Scholar] [CrossRef]
- Barreiro-Ures, D.; Fraguela, B.; Doallo, R.; Cao, R.; Francisco-Fernández, M.; Reyes, M. binnednp: Nonparametric Estimation for Interval-Grouped Data. CRAN 2018. Available online: https://cran.r-project.org/package=binnednp,Rpackageversion0.1.0 (accessed on 9 September 2018).
- Eddelbuettel, D.; Francois, R. Rcpp: Seamless R and C++ integration. J. Stat. Softw. 2011, 40, 1–18. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreiro-Ures, D.; Cao, R.; Francisco-Fernández, M. An R Package Implementation for Statistical Modeling of Emergence Curves in Weed Science. Proceedings 2018, 2, 1165. https://doi.org/10.3390/proceedings2181165
Barreiro-Ures D, Cao R, Francisco-Fernández M. An R Package Implementation for Statistical Modeling of Emergence Curves in Weed Science. Proceedings. 2018; 2(18):1165. https://doi.org/10.3390/proceedings2181165
Chicago/Turabian StyleBarreiro-Ures, Daniel, Ricardo Cao, and Mario Francisco-Fernández. 2018. "An R Package Implementation for Statistical Modeling of Emergence Curves in Weed Science" Proceedings 2, no. 18: 1165. https://doi.org/10.3390/proceedings2181165
APA StyleBarreiro-Ures, D., Cao, R., & Francisco-Fernández, M. (2018). An R Package Implementation for Statistical Modeling of Emergence Curves in Weed Science. Proceedings, 2(18), 1165. https://doi.org/10.3390/proceedings2181165