The Use of Stochastic Models for Short-Term Prediction of Water Parameters of the Thesaurus Dam, River Nestos, Greece †
Abstract
:1. Introduction
2. Methodology
3. Results
ARIMA Models
3. Conclusions
References
- Albanakis, K.; Mitrakas, M.; Moustaka-Gouni, M.; Psilovikos, A. Determination of the environmental parameters that influence sulphide formation in the newly formed Thesaurus reservoir, in Nestos River, Greece. Fresenius Environ. Bull. 2001, 10, 566–571. [Google Scholar]
- Boskidis, I.; Gikas, G.D.; Sylaios, G.K.; Tsihritzis, V.A. Hydrologic and Water Quality Modelling of Lower Nestos River Basin. Water Resour. Manag. 2012, 1, 29. [Google Scholar]
- Apostolou, A.; Koutrakis, M.; Pehlivanov, L.; Vassilev, M.; Stefanov, T.; Velkov, B. Notes of the Fish Fauna Composition of Mesta (Nestos) River in Regard to Management and Conservation. Acta Zool. Bulg. 2012, 62, 271–276. [Google Scholar]
- Psilovikos, A.; Sentas, A.; Sahanidis, C.; Laopoulos, T. R.E.MO.S. network in lignite mines in Western Macedonia, Greece. Assessment of the results for the year 2008. In Proceedings of the 2nd International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE), Mykonos, Greece, 21–26 June 2009; Volume II, pp. 731–736. [Google Scholar]
- Psilovikos, A.; Sentas, A.; Sahanidis, C.; Laopoulos, T. Simulation and Trend Analysis of R.E.MO.S. Water Quality and Quantity Data in Lignite Mines of Western Macedonia–Greece, for the Years 2007–2009. Desalinat. Water Treat. 2011, 33, 44–52. [Google Scholar] [CrossRef]
- Sentas, A.; Psilovikos, A. Comparison of ARIMA and Transfer Function (TF) Models in Water Temperature Simulation in Dam—Lake Thesaurus, Eastern Macedonia, Greece. In Proceedings of the International Symposium: Environmental Hydraulics, Athens, Greece, 23–25 June 2010; pp. 929–934. [Google Scholar]
- Sentas, A.; Psilovikos, A. Dissolved oxygen assessment in Dam-Lake Thesaurus using stochastic modeling. In Proceedings of the International Conference: Protection and Restoration of the Environment, Thessaloniki, Greece, 3–6 July 2012; pp. 1573–1582. [Google Scholar]
- Anastassopoulos, K. Treatment of big landslides affecting construction of Thissavros hydroelectric project. In Proceedings of the Hydro 2006, Maximizing the Benefits of Hydropower, Porto Carras, Greece, 25–27 September 2006. [Google Scholar]
- Antonopoulos, V.; Papamichail, D.; Mitsiou, Κ. Statistical and trend analysis of water quality and quantity data for the Strymon River in Greece. Hydrol. Earth Syst. Sci. 2001, 5, 679–691. [Google Scholar] [CrossRef]
- Sentas, A.; Psilovikos, A.; Psilovikos, T.; Matzafleri, N. Comparison of the performance of stochastic models in forecasting daily dissolved oxygen data in dam-Lake Thesaurus. Desalin. Water Treat. 2016, 57, 11660–11674. [Google Scholar] [CrossRef]
- Moustaka–Gouni, M.; Albanakis, K.; Mitrakas, M.; Psilovikos, A. Planktic autotrophs and environmental conditions in the newly-formed hydroelectric Thesaurus reservoir, Greece. Arch. Hydrobiol. 2000, 149, 507–526. [Google Scholar] [CrossRef]
- Ahmad, S.; Khan, I.; Parida, B. Performance of stochastic approaches for forecasting river water quality. Water Res. 2001, 35, 4261–4266. [Google Scholar] [CrossRef]
- Ljung, G.M.; Box, G.E. On a measure of lack of fit in time series models. Biometrika 1978, 65, 297–303. [Google Scholar] [CrossRef]
- Akaike, H. A Bayesian analysis of the minimum AIC procedure. Ann. Inst. Stat. Math. 1978, 30, 9–14. [Google Scholar] [CrossRef]
- Box, G.; Jenkins, G.; Reinsel, G. Time Series Analysis, Forecasting and Control, 3rd ed.; Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 1994; p. 598. [Google Scholar]
- Dorffner, G. Neural Networks for Time Series Processing; Neural Network World: Prague, Czech Republic; 1996; pp. 447–468. [Google Scholar]
- Diamantopoulou, M.; Antonopoulos, V.; Papamichail, D. Cascade correlation artificial neural networks for estimating missing monthly values of water quality parameters in rivers. Water Resour. Manag. 2007, 21, 649–662. [Google Scholar] [CrossRef]
- Faruk, D.O. A hybrid neural network and ARIMA model for water quality time series prediction. Eng. Appl. Artif. Intell. 2010, 23, 586–594. [Google Scholar] [CrossRef]
Thesaurus Station—DO Parameter—Depth 1 m | |||||
---|---|---|---|---|---|
Μοdel | MSE | RMSE | MAPE | NSC | |
ARIMA | 0.442 | 0.665 | 7.947 | 0.614 | |
TF | 0.452 | 0.672 | 7.974 | 0.605 | |
ANN | 0.523 | 0.723 | 8.934 | 0.544 | |
ARIMA | 0.852 | 0.923 | 11.158 | 0.256 | |
TF | 0.816 | 0.903 | 10.589 | 0.196 | |
ANN | 1.010 | 1.005 | 12.002 | 0.599 | |
ARIMA | 0.960 | 0.979 | 11.713 | 0.163 | |
TF | 0.938 | 0.968 | 11.562 | 0.532 | |
ANN | 1.182 | 1.087 | 12.182 | 0.545 |
Thesaurus Station—DO Parameter—Depth 20 m | |||||
---|---|---|---|---|---|
Model | MSE | RMSE | MAPE | NSC | |
ARIMA | 0.0077 | 0.0877 | 1.0552 | 0.7992 | |
TF | 0.0079 | 0.0891 | 1.0752 | 0.7931 | |
ANN | 0.0434 | 0.2084 | 2.6721 | −0.1303 | |
ARIMA | 0.0154 | 0.1241 | 1.505 | 0.9913 | |
TF | 0.0163 | 0.1278 | 1.6945 | 0.5751 | |
ANN | 0.0570 | 0.2387 | 3.0021 | 0.0191 | |
ARIMA | 0.0215 | 0.1466 | 1.9787 | 0.9881 | |
TF | 0.0228 | 0.1511 | 2.0194 | 0.4061 | |
ANN | 0.0882 | 0.2969 | 3.2124 | 0.0072 |
Thesaurus Station—DO Parameter—Depth 40 m | |||||
---|---|---|---|---|---|
Μοdel | MSE | RMSE | MAPE | NSC | |
ARIMA | 0.0167 | 0.1293 | 1.5882 | 0.9167 | |
TF | 0.0131 | 0.1144 | 1.4791 | 0.9341 | |
ANN | 0.0170 | 0.1305 | 1.6781 | 0.9154 | |
ARIMA | 0.0545 | 0.2334 | 2.5415 | 0.9245 | |
TF | 0.0301 | 0.1732 | 2.0954 | 0.7155 | |
ANN | 0.0510 | 0.2258 | 2.7102 | 0.6112 | |
ARIMA | 0.0741 | 0.2722 | 3.6787 | 0.9611 | |
TF | 0.0515 | 0.2269 | 3.0231 | 0.5930 | |
ANN | 0.0893 | 0.2988 | 3.7487 | 0.4327 |
Thesaurus Station—DO Parameter—Depth 70 m | |||||
---|---|---|---|---|---|
Μοdel | MSE | RMSE | MAPE | NSC | |
ARIMA | 0.1376 | 0.3709 | 4.4140 | −0.170 | |
TF | 0.1413 | 0.3759 | 4.3697 | −0.202 | |
ANN | 0.1913 | 0.4375 | 5.860 | −0.628 | |
ARIMA | 0.1470 | 0.3834 | 5.1874 | −0.1809 | |
TF | 0.1725 | 0.4153 | 5.4653 | 0.0325 | |
ANN | 0.2130 | 0.4615 | 5.9012 | −0.1109 | |
ARIMA | 0.1760 | 0.4195 | 6.2807 | −0.1771 | |
TF | 0.2010 | 0.4484 | 6.7227 | 0.0298 | |
ANN | 0.2278 | 0.4772 | 7.0136 | −0.0208 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sentas, A.; Karamoutsou, L.; Charizopoulos, N.; Psilovikos, T.; Psilovikos, A.; Loukas, A. The Use of Stochastic Models for Short-Term Prediction of Water Parameters of the Thesaurus Dam, River Nestos, Greece. Proceedings 2018, 2, 634. https://doi.org/10.3390/proceedings2110634
Sentas A, Karamoutsou L, Charizopoulos N, Psilovikos T, Psilovikos A, Loukas A. The Use of Stochastic Models for Short-Term Prediction of Water Parameters of the Thesaurus Dam, River Nestos, Greece. Proceedings. 2018; 2(11):634. https://doi.org/10.3390/proceedings2110634
Chicago/Turabian StyleSentas, Antonis, Lina Karamoutsou, Nikos Charizopoulos, Thomas Psilovikos, Aris Psilovikos, and Athanasios Loukas. 2018. "The Use of Stochastic Models for Short-Term Prediction of Water Parameters of the Thesaurus Dam, River Nestos, Greece" Proceedings 2, no. 11: 634. https://doi.org/10.3390/proceedings2110634
APA StyleSentas, A., Karamoutsou, L., Charizopoulos, N., Psilovikos, T., Psilovikos, A., & Loukas, A. (2018). The Use of Stochastic Models for Short-Term Prediction of Water Parameters of the Thesaurus Dam, River Nestos, Greece. Proceedings, 2(11), 634. https://doi.org/10.3390/proceedings2110634