Modelling of the Effect of Drained Peat Soils to Water Quality Using MACRO and SOILN Models †
Abstract
:1. Introduction
2. Models and Study Area
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Iital, A.; Pachel, K.; Loigu, E.; Pihlak, M.; Leisk, U. Recent trends in nutrient concentrations in Estonian rivers as a response to large-scale changes in land-use intensity and lifestyles. J. Environ. Monit. 2010, 12, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Vassiljev, A.; Blinova, I. The influence of drained peat soils on diffuse nitrogen pollution of surface water. Hydrol. Res. 2012, 43, 352–358. [Google Scholar] [CrossRef]
- Hoffmann, M.; Johnsson, H.; Gustavson, A.; Grimvall, A. Leaching of nitrogen in Swedish agriculture—A historical perspective. Agric. Ecosyst. Environ. 2000, 80, 277–290. [Google Scholar] [CrossRef]
- Heikkinen, K. Organic matter, iron and nutrient transport and nature of dissolved organic matter in the drainage of a boreal humic river in northern Finland. Sci. Total Environ. 1994, 152, 81–89. [Google Scholar] [CrossRef]
- Kløve, B. Characteristics of nitrogen and phosphorus loads in peat mining wastewater. Water Res. 2001, 35, 2353–2362. [Google Scholar] [CrossRef]
- Kløve, B.; Sveistrup, T.E.; Hauge, A. Leaching of nutrients and emission of greenhouse gases from peatland cultivation at Bodin, Northern Norway. Geoderma 2010, 154, 219–232. [Google Scholar] [CrossRef]
- Litaor, M.I.; Eshel, G.; Sade, R.; Rimmer, A.; Shenker, M. Hydrogeological characterization of an altered wetland. J. Hydrol. 2008, 349, 333–349. [Google Scholar] [CrossRef]
- Verhoeven, J.T.A.; Setter, T.L. Agricultural use of wetlands: Opportunities and limitations. Ann. Bot. 2010, 105, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Tiemeyer, B.; Frings, J.; Kahle, P.; Kohne, S.; Lennartz, B. A comprehensive study of nutrient losses, soil properties and groundwater concentrations in a degraded peatland used as an intensive meadow—Implications for re-wetting. J. Hydrol. 2007, 345, 80–101. [Google Scholar] [CrossRef]
- EC Eurostat. Data Requirements, Availability and Gaps in Agri-Environment Indicators (AEIs) in Europe, 2011th ed.; EC Eurostat: Luxembourg, 2011. [Google Scholar]
- Kaur, K.; Vassiljev, A.; Annus, I.; Stalnacke, P. Source apportionment of nitrogen in Estonian rivers. J. Water Supply Res. Technol. 2016, 162, 188–195. [Google Scholar] [CrossRef]
- Beven, K.; Germann, P.F. Macropores and water flow in soils. Water Resour. Res. 1982, 18, 1311–1325. [Google Scholar] [CrossRef]
- Larsson, M.H.; Jarvis, J. A dual-porosity model to quantify macropore flow effects on nitrate leaching. J. Environ. Qual. 1999, 28, 1298–1307. [Google Scholar] [CrossRef]
- Johnsson, H.; Bergström, L.; Jansson, P.E.; Paustian, K. Simulated nitrogen dynamics and losses in a layered agricultural soil. Agric. Ecosyst. Environ. 1987, 18, 333–356. [Google Scholar] [CrossRef]
- Jarvis, N. The MACRO Model (Version 3.1). Technical Description and Sample Simulations; Rep and Diss SLU: Uppsla, Sweden, 1994. [Google Scholar]
- Vassiljev, A.; Grimvall, A.; Larsson, M. A dual-porosity model for nitrogen leaching from a watershed. Hydrol. Sci. J. 2004, 49, 313–322. [Google Scholar] [CrossRef]
- Vassiljev, A. Modelling of the influence of drained areas on the environment. In Proceedings of the 15th International Conference on Civil, Structural and Environmental Engineering Computing, Prague, Czech Republic, 1–4 September 2015; Kruis, J., Tsompanakis, Y., Topping, B.H.V., Eds.; Civil-Comp Press: Stirlingshire, UK, 2015; p. 280. [Google Scholar] [CrossRef]
- Topping, B.H.V.; Sziveri, J.; Bahreinejad, A.; Leite, J.P.B.; Cheng, B. Parallel processing, neural networks and genetic algorithms. Adv. Eng. Softw. 1998, 29, 763–786. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models, Part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Binger, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Hanslík, E.; Marešová, D.; Juranová, E.; Vlnas, R. Dependence of selected water quality parameters on flow rates at river sites in the Czech Republic. J. Sustain. Dev. Energy Water Environ. Syst. 2016, 4, 127–140. [Google Scholar] [CrossRef]
- Statistics Estonia. Statistical Yearbook of Estonia; Statistics Estonia: Tallinn, Estonia, 2015; Available online: http://www.stat.ee/publication-2015_statistical-yearbook-of-estonia-2015 (accessed on 7 May 2018).
- Vassiljev, A.; Blinova, I.; Ennet, P. Source apportionment of nutrients in Estonian rivers. Desalination 2008, 226, 222–230. [Google Scholar] [CrossRef]
- Vassiljev, A.; Margus, G.; Annus, I.; Stålnacke, P. Investigation of Possible Nutrient Sources in Estonian Rivers. Proc. Eng. 2016, 162, 188–195. [Google Scholar] [CrossRef]
Land Use/Soil | Sandy Loam | Clay | Sand | Clay Loam | Peat | Sum |
---|---|---|---|---|---|---|
Arable | 0.9 | 0.0 | 0.3 | 16.4 | 2.3 | 19.9 |
Pasture | 0.4 | 0.0 | 0.2 | 1.7 | 13.4 | 15.8 |
Forest | 1.5 | 0.0 | 3.7 | 16.5 | 29.7 | 51.4 |
Natural grass | 0.0 | 0.0 | 0.0 | 0.6 | 0.2 | 0.8 |
Wetland | 9.9 | |||||
Others | 2.2 | |||||
Total | 100 |
Year | Clay Loam (kg/ha) | Peat (kg/ha) |
---|---|---|
2000 | 9.23 | 6.94 |
2001 | 13.97 | 14.89 |
2002 | 12.62 | 15.01 |
2003 | 7.50 | 4.11 |
2004 | 31.23 | 43.88 |
2005 | 21.57 | 30.40 |
2006 | 11.99 | 4.44 |
2007 | 28.66 | 30.86 |
2008 | 39.63 | 112.16 |
2009 | 26.86 | 71.40 |
2010 | 15.91 | 11.80 |
2011 | 24.62 | 32.75 |
Total | 243.80 | 378.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vassiljev, A.; Annus, I.; Kändler, N.; Kaur, K. Modelling of the Effect of Drained Peat Soils to Water Quality Using MACRO and SOILN Models. Proceedings 2018, 2, 619. https://doi.org/10.3390/proceedings2110619
Vassiljev A, Annus I, Kändler N, Kaur K. Modelling of the Effect of Drained Peat Soils to Water Quality Using MACRO and SOILN Models. Proceedings. 2018; 2(11):619. https://doi.org/10.3390/proceedings2110619
Chicago/Turabian StyleVassiljev, Anatoli, Ivar Annus, Nils Kändler, and Katrin Kaur. 2018. "Modelling of the Effect of Drained Peat Soils to Water Quality Using MACRO and SOILN Models" Proceedings 2, no. 11: 619. https://doi.org/10.3390/proceedings2110619
APA StyleVassiljev, A., Annus, I., Kändler, N., & Kaur, K. (2018). Modelling of the Effect of Drained Peat Soils to Water Quality Using MACRO and SOILN Models. Proceedings, 2(11), 619. https://doi.org/10.3390/proceedings2110619