Optimizing the Formation of DMAs in a Water Distribution Network Applying Geometric Partitioning (GP) and Gaussian Mixture Models (GMMs) †
Abstract
:1. Introduction
2. Proposed Model
2.1. Geometric Partitioning
2.2. Gaussian Mixture Modelling
3. Optimization and Experimental Results
3.1. Networks
3.2. Forming of the Objective Functions
3.3. Performing the Proposed Model for Both Networks
3.4. Comparison with Genetic Algorithm
4. Conclusions
References
- Senthil Kumar, A.R.; Sudheer, K.P.; Jain, S.K.; Agarwal, P.K. Rainfall-runoff modelling using artificial neural networks: Comparison of network types. Hydrol. Process. 2005, 19, 1277–1291. [Google Scholar] [CrossRef]
- Nagy, H.M.; Watanabe, K.; Hirano, M. Prediction of Sediment Load Concentration in Rivers using Artificial Neural Network Model. J. Hydraul. Eng. 2002, 128, 588–595. [Google Scholar] [CrossRef]
- Maier, H.R.; Dandy, G.C. Neural networks for the prediction and forecasting of water 20 resources variables: A review of modelling issues and applications. Environ. Model. Softw. 2000, 15, 101–124. [Google Scholar] [CrossRef]
- Campolo, M.; Soldati, A.; Andreussi, P. Artificial neural network approach to flood forecasting in the River Arno. Hydrol. Sci. J. 2003, 48, 381–398. [Google Scholar] [CrossRef]
- Abrahart, R.J.; White, S. Modelling Sediment Transfer in Malawi: Comparing Backpropagation Neural Network Solutions against a Multiple Linear Regression Benchmark Using Small Data Sets. Phys. Chem. Earth B Hydrol. Oceans Atmos. 2001, 26, 19–24. [Google Scholar] [CrossRef]
- Cunha, M.D.; Sousa, J. Water distribution network design optimization: Simulated annealing approach. J. Water Resour. Plan. Manag. 1999, 125, 215–221. [Google Scholar] [CrossRef]
- Lansey, K.E.; Eusuff, M.M. Optimization of water distribution network design using the Shuffled Frog Leaping Algorithm. J. Water Resour. Plan. Manag. 2003, 129, 10–25. [Google Scholar]
- De Corte, A.; Sörensen, K. An Iterated Local Search Algorithm for multi-period water distribution network design optimization. Water 2016, 8, 359. [Google Scholar] [CrossRef]
- Williams, R.D. Performance of dynamic load balancing algorithms for unstructured mesh calculations. Concurr. Pract. Exp. 1991, 3, 457–481. [Google Scholar] [CrossRef]
- Simon, H.D. Partitioning of unstructured problems for parallel processing. Comput. Syst. Eng. 1991, 2, 135–148. [Google Scholar] [CrossRef]
- Andrieu, C.; Freitas, N.D.; Doucet, A.; Jordan, M.I. An Introduction to MCMC for Machine Learning. J. Mach. Learn. 2003, 50, 5–43. [Google Scholar] [CrossRef]
- Bernardo, J.M.; Smith, A.F.M. Bayesian Theory; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Xu, L.; Jordan, M.I. On Convergence Properties of the EM Algorithm for Gaussian Mixture. Neural Comput. 1996, 8, 129–151. [Google Scholar] [CrossRef]
- Figueiredo, M.A.T. Bayesian Image Segmentation Using Gaussian Field Priors. In Proceedings of the 5th International Workshop EMMCVPR 2005, St. Augustine, FL, USA, 9–11 November 2005; LNCS Volume 3757, pp. 74–89. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzivasili, S.; Papadimitriou, K.; Kanakoudis, V.; Patelis, M. Optimizing the Formation of DMAs in a Water Distribution Network Applying Geometric Partitioning (GP) and Gaussian Mixture Models (GMMs). Proceedings 2018, 2, 601. https://doi.org/10.3390/proceedings2110601
Chatzivasili S, Papadimitriou K, Kanakoudis V, Patelis M. Optimizing the Formation of DMAs in a Water Distribution Network Applying Geometric Partitioning (GP) and Gaussian Mixture Models (GMMs). Proceedings. 2018; 2(11):601. https://doi.org/10.3390/proceedings2110601
Chicago/Turabian StyleChatzivasili, Stavroula, Katerina Papadimitriou, Vasilis Kanakoudis, and Menelaos Patelis. 2018. "Optimizing the Formation of DMAs in a Water Distribution Network Applying Geometric Partitioning (GP) and Gaussian Mixture Models (GMMs)" Proceedings 2, no. 11: 601. https://doi.org/10.3390/proceedings2110601
APA StyleChatzivasili, S., Papadimitriou, K., Kanakoudis, V., & Patelis, M. (2018). Optimizing the Formation of DMAs in a Water Distribution Network Applying Geometric Partitioning (GP) and Gaussian Mixture Models (GMMs). Proceedings, 2(11), 601. https://doi.org/10.3390/proceedings2110601