Development of the Statistical Model for Monitoring Salinization in the Mekong Delta of Vietnam Using Remote Sensing Data and In-Situ Measurements †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite and Ground Measured Data
2.3. Image Processing
2.3.1. Conversion of Digital Numbers into Spectral Radiance
2.3.2. Conversion from Spectral Radiance to Planetary Reflectance
2.3.3. Normalized Difference Vegetation Index (NDVI)
2.4. Investigating the Correlation between the Landsat-8 Satellite Image Data and the In-Situ Salinity Measurements
2.5. Developing Models of Water Salinity from Planetary Reflectance of Landsat-8 Data
2.6. Spatial Analysis for the Study Area
3. Results and Discussion
3.1. Empirical Models for Determining Salinity Classes
3.2. Application of Model for Spatial Analysis
4. Conclusions
Funding
References
- Binh, N.; Vulnerability and Adaptation to Salinity Intrusion in the Coastal Province of Tra Vinh. Disaster Risk Reduct. Clim. Chang. Adapt. 2010. Available online: https://d-nb.info/1077388489/34 (accessed on 27 July 2018).
- Khalil, T. Integrated Field Study, Remote Sensing and GIS Approach for Assessing and Monitoring Some Chemical Water Quality Parameters in Bardawil Lagoon, Egypt. Int. J. Innov. Res. Sci. Eng. Technol. 2016, 5, 14656–14669. [Google Scholar]
- Choubey, V.K. Monitoring surface water conductivity with Indian remote sensing satellite data: A case study from central India. Hydrol. Chem. Biol. Process. Transform. Transp. Contam. Aquat. Environ. 1994, 219, 317–326. [Google Scholar]
- Abdelmalik, K. Role of statistical remote sensing for Inland water quality parameters prediction. Egypt. J. Remote Sens. Space Sci. 2016, 1–8. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Weier, J.; Herring, D. Measuring vegetation (NDVI&EVI). NASA Earth Obs. 1999. Available online: https://earthobservatory.nasa.gov/Features/MeasuringVegetation (accessed on 27 July 2018).
- Howari, F.M. Spectral Properties of Salt Crusts Formed on Saline Soils. J. Environ. 2002, 31, 1453–1461. [Google Scholar] [CrossRef] [PubMed]
No. | Name | River | Province | Longitude | Latitude |
---|---|---|---|---|---|
1 | Hoa Binh | Cua Tieu | Tien Giang | 106°36′ E | 10°18′ N |
2 | Vam Kenh | Cua Tieu | Tien Giang | 106°43′ E | 10°16′ N |
3 | Binh Dai | Cua Dai | Ben Tre | 106°43′ E | 10°12′ N |
4 | Loc Thuan | Cua Dai | Ben Tre | 106°43′ E | 10°10′ N |
5 | Son Doc | Ham Luong | Ben Tre | 106°30′ E | 10°03′ N |
6 | Huong My | Cung Hau | Ben Tre | 106°23′ E | 9°59′ N |
7 | An Thuan | Ham Luong | Ben Tre | 106°36′ E | 9°59′ N |
8 | Ben Trai | Co Chien | Ben Tre | 106°31′ E | 9°53′ N |
9 | Cau Quan | Hau | Tra Vinh | 106°09′ E | 9°43′ N |
10 | Tra Kha | Hau | Tra Vinh | 106°20′ E | 9°35′ N |
11 | Tran De | Cua Tran De | Soc Trang | 106°12′ E | 9°31′ N |
Pearson Correlation Coefficient (r) | |
---|---|
Band 1—Coastal Aerosol | 0.67790 |
Band 2—Blue | 0.785104 |
Band 3—Green | 0.81233 |
Band 4—Red | 0.82786 |
Band 5—Near Infrared (NIR) | −0.58903 |
Band 6—Short-Wave Infrared 1 (SWIR1) | −0.4972 |
Band 7— Short-Wave Infrared 2 (SWIR2) | −0.28816 |
Band 10—Thermal Infrared 1 (TIR1) | −0.46747 |
Band 11—Thermal Infrared 2 (TIR2) | −0.36758 |
Pearson Correlation Coefficient (r) | |
---|---|
PC1 | 0.860305 |
PC2 | 0.562152 |
PC3 | −0.503505 |
PC4 | −0.26186 |
Model No. | Model 1 | R2 | RMSE |
---|---|---|---|
1 | S = 0.0014.e0.0006.(PC1) | 0.8195 | 1.592 |
2 | S = 0.0001.e0.0011.(G) | 0.7859 | 2.029 |
3 | S = 0.0131.e0.0007.(R) | 0.7510 | 2.073 |
4 | S = 0.0042.(PC1) − 54.015 | 0.7401 | 2.317 |
5 | S = 0.00001.e0.0012.(B) | 0.7269 | 2.651 |
6 | S = 0.0053.(R) − 41.889 | 0.6854 | 2.761 |
7 | S = 0.0081.(G) − 74.6 | 0.6599 | 3.601 |
8 | S = 0.0095.(B) − 94.186 | 0.6164 | 4.081 |
Estuaries | Length of Saline Intrusion |
---|---|
Cua Tieu | 52 km |
Cua Dai | 56 km |
Cua Ba Lai | 47 km |
Cua Ham Luong | 50 km |
Cua Co Chien | 47 km |
Cua Cung Hau | 48 km |
Cua Dinh An | 38 km |
Cua Tran De | 43 km |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, N.N.; Trung, L.V.; Van, T.T. Development of the Statistical Model for Monitoring Salinization in the Mekong Delta of Vietnam Using Remote Sensing Data and In-Situ Measurements. Proceedings 2018, 2, 565. https://doi.org/10.3390/IECG_2018-05362
Vu NN, Trung LV, Van TT. Development of the Statistical Model for Monitoring Salinization in the Mekong Delta of Vietnam Using Remote Sensing Data and In-Situ Measurements. Proceedings. 2018; 2(10):565. https://doi.org/10.3390/IECG_2018-05362
Chicago/Turabian StyleVu, Nguyen Nguyen, Le Van Trung, and Tran Thi Van. 2018. "Development of the Statistical Model for Monitoring Salinization in the Mekong Delta of Vietnam Using Remote Sensing Data and In-Situ Measurements" Proceedings 2, no. 10: 565. https://doi.org/10.3390/IECG_2018-05362
APA StyleVu, N. N., Trung, L. V., & Van, T. T. (2018). Development of the Statistical Model for Monitoring Salinization in the Mekong Delta of Vietnam Using Remote Sensing Data and In-Situ Measurements. Proceedings, 2(10), 565. https://doi.org/10.3390/IECG_2018-05362