Application of GNSS Methodologies to Obtain Precipitable Water Vapor (PWV) and Its Comparison with Radiosonde Data †
Abstract
:1. Introduction
2. Tropospheric Delay and Precipitable Water Vapor
- With temperature and humidity profiles from either radiosonde observations or atmospheric reanalysis datasets, which is the most accurate option but its temporal resolution is quite low.
- Using a relationship between surface temperature 𝑇s and the water-vapor-weighted mean temperature Tm. This method requires of measurement of surface temperature and limited stations have surface temperature observed from ground meteorological sensors.
- Calculating from an empirical model developed from atmospheric reanalysis products. Using these models allows to calculate the needed parameters without in situ meteorological data. In fact, the empirical model GPT2w requires only the position and height of the site, and the date as input parameters, providing the mean values plus annual and semiannual amplitudes of pressure as well as weighted mean temperature and other climatological parameters derived consistently from ERA-Interim field data with a horizontal resolution of 1° [5].
3. Data and Processing Strategy
3.1. GNSS Site
3.2. Radiosoundig Data
3.3. Precipitable Water Vapor Processing
4. Results
References
- Ning, T.; Wang, J.; Elgered, G.; Dick, G.; Wickert, J.; Bradke, M.; Sommer, M.; Querel, R.; Smale, D. The uncertainty of the atmospheric integrated water vapor estimated from GNSS observations. Atmos. Meas. Tech. 2016, 9, 79–92. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water. J. Appl. Meteor. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Torres, B.; Cachorro, V.E.; Toledano, C.; de Galisteo, J.P.O.; Berjón, A.; de Frutos, A.M.; Bennouna, Y.; Laulainen, N. Precipitable water vapor characterization in the Gulf of Cadiz region (southwestern Spain) based on Sun photometer, GPS, and radiosonde data. J. Geophys. Res. 2010, 115, D18103. [Google Scholar] [CrossRef]
- Ortiz de Galisteo, J.P.; Bennouna, Y.; Toledano, C.; Cachorro, V.; Romero, P.; Andrés, M.I.; Torres, B. Analysis of the annual cycle of the precipitable water vapour over Spain from 10-year homogenized series of GPS data. Q. J. R. Meteorol. Soc. 2014, 140, 397–406. [Google Scholar] [CrossRef]
- Böhm, J.; Möller, G.; Shindelegger, M.; Pain, G.; Weber, R. Development of an improved empirical model for slant delays in the troposphere (GPT2w). J. GPS Solut. 2015. [Google Scholar] [CrossRef]
- Ohtani, R.; Naito, I. Comparisons of GPS-derived precipitable water vapors with radiosonde observations in Japan. J. Geophys. Res. 2000, 105, 26917–26929. [Google Scholar] [CrossRef]
- National Center for Environmental Information. Available online: https://www.ncdc.noaa.gov/data-access/weather-balloon/integrated-global-radiosonde-archive (accessed on 1 May 2019).
- Dach, R.; Lutz, S.; Walser, P.; Fridez, P. (Eds.) Bernese GNSS Software Version 5.2. User Manual; Astronomical Institute, University of Bern, Bern Open Publishing: Bern, Switzerland, 2015; ISBN 978-3-906813-05-9. [Google Scholar] [CrossRef]
- IERS Conventions. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie; IERS Technical Note 36; Petit, G., Luzum, B., Eds.; 2010; p. 179. ISBN 3-89888-989-6. [Google Scholar]
- Gui, K.; Che, H.; Chen, Q.; Zeng, Z.; Liu, H.; Wang, Y.; Zheng, Y.; Sun, T.; Liao, T.; Wang, H.; et al. Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China. Atmos. Res. 2017, 197, 461–473. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, J.; Zhang, S.; Han, F. Precipitable Water Vapor Retrieval and Analysis by Multiple Data Sources: Ground-Based GNSS, Radio Occultation, Radiosonde, Microwave Satellite, and NWP Reanalysis Data. J. Sens. 2018, 2018, 3428303. [Google Scholar] [CrossRef]
- Van Malderen, R.; Brenot, H.; Pottiaux, E.; Beirle, S.; Hermans, C.; De Mazière, M.; Wagner, T.; De Backer, H.; Bruyninx, C. A multi-site intercomparison of integrated water vapour observations for climate change analysis. Atmos. Meas. Tech. 2014, 7, 2487–2512. [Google Scholar] [CrossRef]
Parameter | Bernese Processing |
---|---|
Frequency | GPS: L1, L2 |
Elevation Cutoff | 3° |
Sampling Rate | 30 s |
Satellite Orbit | Final IGS orbits |
A priori troposphere model | GPT dry with GMF dry mapping |
Mapping Function | Wet GMF |
Tropospheric Gradients | Estimated |
Gradient Model | CHENHER |
Ambiguity Strategy | Quasi Ionosphere-Free (QIF) |
Reference Frame | IGb08 |
Week | Maximum Difference (mm) | Minimum Difference (mm) | RMS (mm) | Correlation Coefficient r |
---|---|---|---|---|
1747 | +4.40 | −0.15 | 2.13 | 0.98 |
1770 | +4.59 | +0.09 | 2.64 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perdiguer-López, R.; Berné-Valero, J.L.; Garrido-Villén, N. Application of GNSS Methodologies to Obtain Precipitable Water Vapor (PWV) and Its Comparison with Radiosonde Data. Proceedings 2019, 19, 24. https://doi.org/10.3390/proceedings2019019024
Perdiguer-López R, Berné-Valero JL, Garrido-Villén N. Application of GNSS Methodologies to Obtain Precipitable Water Vapor (PWV) and Its Comparison with Radiosonde Data. Proceedings. 2019; 19(1):24. https://doi.org/10.3390/proceedings2019019024
Chicago/Turabian StylePerdiguer-López, Raquel, José Luis Berné-Valero, and Natalia Garrido-Villén. 2019. "Application of GNSS Methodologies to Obtain Precipitable Water Vapor (PWV) and Its Comparison with Radiosonde Data" Proceedings 19, no. 1: 24. https://doi.org/10.3390/proceedings2019019024
APA StylePerdiguer-López, R., Berné-Valero, J. L., & Garrido-Villén, N. (2019). Application of GNSS Methodologies to Obtain Precipitable Water Vapor (PWV) and Its Comparison with Radiosonde Data. Proceedings, 19(1), 24. https://doi.org/10.3390/proceedings2019019024