Predicting Alignment in a Two Higgs Doublet Model †
Abstract
:1. Introduction
2. Higgs Alignment from an Symmetry
3. A Model with Symmetry
4. -Symmetry Breaking and Misalignment
Acknowledgments
References
- Gunion, J.F.; Haber, H.E. The CP conserving two Higgs doublet model: The Approach to the decoupling limit? Phys. Rev. D 2003, 67, 075019. [Google Scholar] [CrossRef]
- Antoniadis, I.; Benakli, K.; Delgado, A.; Quiros, M. A New gauge mediation theory. Adv. Stud. Theor. Phys. 2008, 2, 645–672. [Google Scholar]
- Ellis, J.; Quevillon, J.; Sanz, V. Doubling Up on Supersymmetry in the Higgs Sector. J. High Energy Phys. 2016, 10, 086. [Google Scholar] [CrossRef]
- Benakli, K.; Goodsell, M.D.; Williamson, S.L. Higgs alignment from extended supersymmetry. Eur. Phys. J. C 2018, 78, 658. [Google Scholar] [CrossRef] [PubMed]
- Benakli, K.; Chen, Y.; Lafforgue-Marmet, G. R-symmetry for Higgs alignment without decoupling. arXiv 2018, arXiv:1811.08435. [Google Scholar] [CrossRef]
- Belanger, G.; Benakli, K.; Goodsell, M.; Moura, C.; Pukhov, A. Dark Matter with Dirac and Majorana Gaugino Masses. J. Cosmol. Astropart. Phys. 2009. [Google Scholar] [CrossRef]
- Gunion, J.F.; Haber, H.E.; Kane, G.L.; Dawson, S. The Higgs Hunter’s Guide. Front. Phys. 2000, 80, 1–404. [Google Scholar]
- Branco, G.C.; Ferreira, P.M.; Lavoura, L.; Rebelo, M.N.; Sher, M.; Silva, J.P. Theory and phenomenology of two-Higgs-doublet models. Phys. Rept. 2012, 516. [Google Scholar] [CrossRef]
- Djouadi, A. The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model. Phys. Rept. 2008, 459. [Google Scholar] [CrossRef]
- Bernon, J.; Gunion, J.F.; Haber, H.E.; Jiang, Y.; Kraml, S. Scrutinizing the alignment limit in two-Higgs-doublet models: mh = 125 GeV. Phys. Rev. D 2015, 92, 075004. [Google Scholar] [CrossRef]
- Bernon, J.; Gunion, J.F.; Haber, H.E.; Jiang, Y.; Kraml, S. Scrutinizing the alignment limit in two-Higgs-doublet models. II. mH = 125 GeV. Phys. Rev. D 2016, 93, 035027. [Google Scholar] [CrossRef]
- Carena, M.; Low, I.; Shah, N.R.; Wagner, C.E.M. Impersonating the Standard Model Higgs Boson: Alignment without Decoupling. J. High Energy Phys. 2014, 4, 015. [Google Scholar] [CrossRef]
- Carena, M.; Haber, H.E.; Low, I.; Shah, N.R.; Wagner, C.E.M. Alignment limit of the NMSSM Higgs sector. Phys. Rev. D 2016, 93, 035013. [Google Scholar] [CrossRef]
- Haber, H.E.; Heinemeyer, S.; Stefaniak, T. The Impact of Two-Loop Effects on the Scenario of MSSM Higgs Alignment without Decoupling. Eur. Phys. J. C 2017, 77, 742. [Google Scholar] [CrossRef]
- Davidson, S.; Haber, H.E. Basis-independent methods for the two-Higgs-doublet model. Phys. Rev. D 2005, 72, 035004. [Google Scholar] [CrossRef]
- Ivanov, I.P. Two-Higgs-doublet model from the group-theoretic perspective. Phys. Lett. B 2006, 632. [Google Scholar] [CrossRef]
- Ferreira, P.M.; Haber, H.E.; Silva, J.P. Generalized CP symmetries and special regions of parameter space in the two-Higgs-doublet model. Phys. Rev. D 2009, 79, 116004. [Google Scholar] [CrossRef]
- Dev, P.S.B.; Pilaftsis, A. Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment. J. High Energy Phys. 2014, 12, 024. [Google Scholar] [CrossRef]
- Lane, K.; Shepherd, W. Natural Stabilization of the Higgs Boson’s Mass and Alignment. arXiv 2018, arXiv:1808.07927. [Google Scholar] [CrossRef]
- Ferreira, P.M.; Silva, J.P. A Two-Higgs Doublet Model With Remarkable CP Properties. Eur. Phys. J. C 2010, 69, 45–52. [Google Scholar] [CrossRef]
- Fayet, P. Fermi-Bose Hypersymmetry. Nucl. Phys. B 1976, 113, 135. [Google Scholar] [CrossRef]
- del Aguila, F.; Dugan, M.; Grinstein, B.; Hall, L.J.; Ross, G.G.; West, P.C. Low-energy Models With Two Supersymmetries. Nucl. Phys. B 1985, 250, 225–251. [Google Scholar] [CrossRef]
- Antoniadis, I.; Delgado, A.; Benakli, K.; Quiros, M.; Tuckmantel, M. Splitting extended supersymmetry. Phys. Rev. B 2006, 634, 302–306. [Google Scholar] [CrossRef]
- Antoniadis, I.; Benakli, K.; Delgado, A.; Quiros, M.; Tuckmantel, M. Split extended supersymmetry from intersecting branes. Nucl. Phys. B 2006, 744, 156–179. [Google Scholar] [CrossRef]
- Benakli, K.; Moura, C. Les Houches physics at TeV colliders 2005 beyond the standard model working group: Summary report. arXiv 2006, arXiv:hep-ph/0602198. [Google Scholar]
- Fayet, P. Massive gluinos. Phys. Lett. B 1978, 78, 417–420. [Google Scholar] [CrossRef]
- Polchinski, J.; Susskind, L. Breaking of Supersymmetry at Intermediate-Energy. Phys. Rev. D 1982, 26, 3661. [Google Scholar] [CrossRef]
- Hall, L.J.; Randall, L. U(1)-R symmetric supersymmetry. Nucl. Phys. B 1991, 352, 289–308. [Google Scholar] [CrossRef]
- Fox, P.J.; Nelson, A.E.; Weiner, N. Dirac gaugino masses and supersoft supersymmetry breaking. J. High Energy Phys. 2002, 8, 035. [Google Scholar] [CrossRef]
- Benakli, K.; Goodsell, M.D. Dirac Gauginos in General Gauge Mediation. Nucl. Phys. B 2009, 816, 185–203. [Google Scholar] [CrossRef]
- Benakli, K.; Goodsell, M.D. Dirac Gauginos and Kinetic Mixing. Nucl. Phys. B 2010, 830, 315–329. [Google Scholar] [CrossRef]
- Amigo, S.D.L.; Blechman, A.E.; Fox, P.J.; Poppitz, E. R-symmetric gauge mediation. J. High Energy Phys. 2009, 1, 018. [Google Scholar] [CrossRef]
- Benakli, K.; Goodsell, M.D. Dirac Gauginos, Gauge Mediation and Unification. Nucl. Phys. B 2010, 840, 1–28. [Google Scholar] [CrossRef]
- Choi, S.Y.; Choudhury, D.; Freitas, A.; Kalinowski, J.; Kim, J.M.; Zerwas, P.M. Dirac Neutralinos and Electroweak Scalar Bosons of N = 1/N = 2 Hybrid Supersymmetry at Colliders. J. High Energy Phys. 2010, 8, 025. [Google Scholar] [CrossRef]
- Benakli, K. Dirac Gauginos: A User Manual. Fortsch. Phys. 2011, 59, 1079–1082. [Google Scholar] [CrossRef]
- Benakli, K.; Goodsell, M.D.; Maier, A.-K. Generating mu and Bmu in models with Dirac Gauginos. Nucl. Phys. B 2011, 851, 445–461. [Google Scholar] [CrossRef]
- Itoyama, H.; Maru, N. D-term Dynamical Supersymmetry Breaking Generating Split N=2 Gaugino Masses of Mixed Majorana-Dirac Type. Int. J. Mod. Phys. A 2012, 27, 1250159. [Google Scholar] [CrossRef]
- Benakli, K.; Goodsell, M.D.; Staub, F. Dirac Gauginos and the 125 GeV Higgs. J. High Energy Phys. 2013, 6, 073. [Google Scholar] [CrossRef]
- Benakli, K.; Goodsell, M.; Staub, F.; Porod, W. Constrained minimal Dirac gaugino supersymmetric standard model. Phys. Rev. D 2014, 90, 045017. [Google Scholar] [CrossRef]
- Martin, S.P. Nonstandard supersymmetry breaking and Dirac gaugino masses without supersoftness. Phys. Rev. D 2015, 92, 035004. [Google Scholar] [CrossRef]
- Braathen, J.; Goodsell, M.D.; Slavich, P. Leading two-loop corrections to the Higgs boson masses in SUSY models with Dirac gauginos. J. High Energy Phys. 2016, 9, 045. [Google Scholar] [CrossRef]
- Unwin, J. R-symmetric High Scale Supersymmetry. Phys. Rev. D 2012, 86, 095002. [Google Scholar] [CrossRef]
- Chakraborty, S.; Martin, A.; Roy, T.S. Charting generalized supersoft supersymmetry. J. High Energy Phys. 2018, 1805, 176. [Google Scholar] [CrossRef]
- Csaki, C.; Goodman, J.; Pavesi, R.; Shirman, Y. The mD-bM problem of Dirac gauginos and its solutions. Phys. Rev. D 2014, 89, 055005. [Google Scholar] [CrossRef]
- Benakli, K.; Darmé, L.; Goodsell, M.D.; Harz, J. The Di-Photon Excess in a Perturbative SUSY Model. Nucl. Phys. B 2016, 911, 127–162. [Google Scholar] [CrossRef]
- Nelson, A.E.; Roy, T.S. New Supersoft Supersymmetry Breaking Operators and a Solution to the μ Problem. Phys. Rev. Lett. 2015, 114, 201802. [Google Scholar] [CrossRef] [PubMed]
- Alves, D.S.M.; Galloway, J.; McCullough, M.; Weiner, N. Goldstone Gauginos. Phys. Rev. Lett. 2015, 115, 161801. [Google Scholar] [CrossRef]
- Alves, D.S.M.; Galloway, J.; McCullough, M.; Weiner, N. Models of Goldstone Gauginos. Phys. Rev. D 2016, 93, 075021. [Google Scholar] [CrossRef]
- Haber, H.E.; Hempfling, R. The Renormalization group improved Higgs sector of the minimal supersymmetric model. Phys. Rev. D 1993, 48, 4280–4309. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benakli, K.; Chen, Y.; Lafforgue-Marmet, G. Predicting Alignment in a Two Higgs Doublet Model. Proceedings 2019, 13, 2. https://doi.org/10.3390/proceedings2019013002
Benakli K, Chen Y, Lafforgue-Marmet G. Predicting Alignment in a Two Higgs Doublet Model. Proceedings. 2019; 13(1):2. https://doi.org/10.3390/proceedings2019013002
Chicago/Turabian StyleBenakli, Karim, Yifan Chen, and Gaëtan Lafforgue-Marmet. 2019. "Predicting Alignment in a Two Higgs Doublet Model" Proceedings 13, no. 1: 2. https://doi.org/10.3390/proceedings2019013002
APA StyleBenakli, K., Chen, Y., & Lafforgue-Marmet, G. (2019). Predicting Alignment in a Two Higgs Doublet Model. Proceedings, 13(1), 2. https://doi.org/10.3390/proceedings2019013002