#
Predicting Alignment in a Two Higgs Doublet Model^{ †}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Higgs Alignment from an $\mathbf{SU}\left(\mathbf{2}\right)$ Symmetry

## 3. A Model with $\mathbf{SU}{\left(\mathbf{2}\right)}_{\mathbf{R}}$ Symmetry

## 4. $\mathbf{R}$-Symmetry Breaking and Misalignment

## Acknowledgments

## References

- Gunion, J.F.; Haber, H.E. The CP conserving two Higgs doublet model: The Approach to the decoupling limit? Phys. Rev. D
**2003**, 67, 075019. [Google Scholar] [CrossRef] - Antoniadis, I.; Benakli, K.; Delgado, A.; Quiros, M. A New gauge mediation theory. Adv. Stud. Theor. Phys.
**2008**, 2, 645–672. [Google Scholar] - Ellis, J.; Quevillon, J.; Sanz, V. Doubling Up on Supersymmetry in the Higgs Sector. J. High Energy Phys.
**2016**, 10, 086. [Google Scholar] [CrossRef] - Benakli, K.; Goodsell, M.D.; Williamson, S.L. Higgs alignment from extended supersymmetry. Eur. Phys. J. C
**2018**, 78, 658. [Google Scholar] [CrossRef] [PubMed] - Benakli, K.; Chen, Y.; Lafforgue-Marmet, G. R-symmetry for Higgs alignment without decoupling. arXiv
**2018**, arXiv:1811.08435. [Google Scholar] [CrossRef] - Belanger, G.; Benakli, K.; Goodsell, M.; Moura, C.; Pukhov, A. Dark Matter with Dirac and Majorana Gaugino Masses. J. Cosmol. Astropart. Phys.
**2009**. [Google Scholar] [CrossRef] - Gunion, J.F.; Haber, H.E.; Kane, G.L.; Dawson, S. The Higgs Hunter’s Guide. Front. Phys.
**2000**, 80, 1–404. [Google Scholar] - Branco, G.C.; Ferreira, P.M.; Lavoura, L.; Rebelo, M.N.; Sher, M.; Silva, J.P. Theory and phenomenology of two-Higgs-doublet models. Phys. Rept.
**2012**, 516. [Google Scholar] [CrossRef] - Djouadi, A. The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model. Phys. Rept.
**2008**, 459. [Google Scholar] [CrossRef] - Bernon, J.; Gunion, J.F.; Haber, H.E.; Jiang, Y.; Kraml, S. Scrutinizing the alignment limit in two-Higgs-doublet models: m
_{h}= 125 GeV. Phys. Rev. D**2015**, 92, 075004. [Google Scholar] [CrossRef] - Bernon, J.; Gunion, J.F.; Haber, H.E.; Jiang, Y.; Kraml, S. Scrutinizing the alignment limit in two-Higgs-doublet models. II. m
_{H}= 125 GeV. Phys. Rev. D**2016**, 93, 035027. [Google Scholar] [CrossRef] - Carena, M.; Low, I.; Shah, N.R.; Wagner, C.E.M. Impersonating the Standard Model Higgs Boson: Alignment without Decoupling. J. High Energy Phys.
**2014**, 4, 015. [Google Scholar] [CrossRef] - Carena, M.; Haber, H.E.; Low, I.; Shah, N.R.; Wagner, C.E.M. Alignment limit of the NMSSM Higgs sector. Phys. Rev. D
**2016**, 93, 035013. [Google Scholar] [CrossRef] - Haber, H.E.; Heinemeyer, S.; Stefaniak, T. The Impact of Two-Loop Effects on the Scenario of MSSM Higgs Alignment without Decoupling. Eur. Phys. J. C
**2017**, 77, 742. [Google Scholar] [CrossRef] - Davidson, S.; Haber, H.E. Basis-independent methods for the two-Higgs-doublet model. Phys. Rev. D
**2005**, 72, 035004. [Google Scholar] [CrossRef] - Ivanov, I.P. Two-Higgs-doublet model from the group-theoretic perspective. Phys. Lett. B
**2006**, 632. [Google Scholar] [CrossRef] - Ferreira, P.M.; Haber, H.E.; Silva, J.P. Generalized CP symmetries and special regions of parameter space in the two-Higgs-doublet model. Phys. Rev. D
**2009**, 79, 116004. [Google Scholar] [CrossRef] - Dev, P.S.B.; Pilaftsis, A. Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment. J. High Energy Phys.
**2014**, 12, 024. [Google Scholar] [CrossRef] - Lane, K.; Shepherd, W. Natural Stabilization of the Higgs Boson’s Mass and Alignment. arXiv
**2018**, arXiv:1808.07927. [Google Scholar] [CrossRef] - Ferreira, P.M.; Silva, J.P. A Two-Higgs Doublet Model With Remarkable CP Properties. Eur. Phys. J. C
**2010**, 69, 45–52. [Google Scholar] [CrossRef] - Fayet, P. Fermi-Bose Hypersymmetry. Nucl. Phys. B
**1976**, 113, 135. [Google Scholar] [CrossRef] - del Aguila, F.; Dugan, M.; Grinstein, B.; Hall, L.J.; Ross, G.G.; West, P.C. Low-energy Models With Two Supersymmetries. Nucl. Phys. B
**1985**, 250, 225–251. [Google Scholar] [CrossRef] - Antoniadis, I.; Delgado, A.; Benakli, K.; Quiros, M.; Tuckmantel, M. Splitting extended supersymmetry. Phys. Rev. B
**2006**, 634, 302–306. [Google Scholar] [CrossRef] - Antoniadis, I.; Benakli, K.; Delgado, A.; Quiros, M.; Tuckmantel, M. Split extended supersymmetry from intersecting branes. Nucl. Phys. B
**2006**, 744, 156–179. [Google Scholar] [CrossRef] - Benakli, K.; Moura, C. Les Houches physics at TeV colliders 2005 beyond the standard model working group: Summary report. arXiv
**2006**, arXiv:hep-ph/0602198. [Google Scholar] - Fayet, P. Massive gluinos. Phys. Lett. B
**1978**, 78, 417–420. [Google Scholar] [CrossRef] - Polchinski, J.; Susskind, L. Breaking of Supersymmetry at Intermediate-Energy. Phys. Rev. D
**1982**, 26, 3661. [Google Scholar] [CrossRef] - Hall, L.J.; Randall, L. U(1)-R symmetric supersymmetry. Nucl. Phys. B
**1991**, 352, 289–308. [Google Scholar] [CrossRef] - Fox, P.J.; Nelson, A.E.; Weiner, N. Dirac gaugino masses and supersoft supersymmetry breaking. J. High Energy Phys.
**2002**, 8, 035. [Google Scholar] [CrossRef] - Benakli, K.; Goodsell, M.D. Dirac Gauginos in General Gauge Mediation. Nucl. Phys. B
**2009**, 816, 185–203. [Google Scholar] [CrossRef] - Benakli, K.; Goodsell, M.D. Dirac Gauginos and Kinetic Mixing. Nucl. Phys. B
**2010**, 830, 315–329. [Google Scholar] [CrossRef] - Amigo, S.D.L.; Blechman, A.E.; Fox, P.J.; Poppitz, E. R-symmetric gauge mediation. J. High Energy Phys.
**2009**, 1, 018. [Google Scholar] [CrossRef] - Benakli, K.; Goodsell, M.D. Dirac Gauginos, Gauge Mediation and Unification. Nucl. Phys. B
**2010**, 840, 1–28. [Google Scholar] [CrossRef] - Choi, S.Y.; Choudhury, D.; Freitas, A.; Kalinowski, J.; Kim, J.M.; Zerwas, P.M. Dirac Neutralinos and Electroweak Scalar Bosons of N = 1/N = 2 Hybrid Supersymmetry at Colliders. J. High Energy Phys.
**2010**, 8, 025. [Google Scholar] [CrossRef] - Benakli, K. Dirac Gauginos: A User Manual. Fortsch. Phys.
**2011**, 59, 1079–1082. [Google Scholar] [CrossRef] - Benakli, K.; Goodsell, M.D.; Maier, A.-K. Generating mu and Bmu in models with Dirac Gauginos. Nucl. Phys. B
**2011**, 851, 445–461. [Google Scholar] [CrossRef] - Itoyama, H.; Maru, N. D-term Dynamical Supersymmetry Breaking Generating Split N=2 Gaugino Masses of Mixed Majorana-Dirac Type. Int. J. Mod. Phys. A
**2012**, 27, 1250159. [Google Scholar] [CrossRef] - Benakli, K.; Goodsell, M.D.; Staub, F. Dirac Gauginos and the 125 GeV Higgs. J. High Energy Phys.
**2013**, 6, 073. [Google Scholar] [CrossRef] - Benakli, K.; Goodsell, M.; Staub, F.; Porod, W. Constrained minimal Dirac gaugino supersymmetric standard model. Phys. Rev. D
**2014**, 90, 045017. [Google Scholar] [CrossRef] - Martin, S.P. Nonstandard supersymmetry breaking and Dirac gaugino masses without supersoftness. Phys. Rev. D
**2015**, 92, 035004. [Google Scholar] [CrossRef] - Braathen, J.; Goodsell, M.D.; Slavich, P. Leading two-loop corrections to the Higgs boson masses in SUSY models with Dirac gauginos. J. High Energy Phys.
**2016**, 9, 045. [Google Scholar] [CrossRef] - Unwin, J. R-symmetric High Scale Supersymmetry. Phys. Rev. D
**2012**, 86, 095002. [Google Scholar] [CrossRef] - Chakraborty, S.; Martin, A.; Roy, T.S. Charting generalized supersoft supersymmetry. J. High Energy Phys.
**2018**, 1805, 176. [Google Scholar] [CrossRef] - Csaki, C.; Goodman, J.; Pavesi, R.; Shirman, Y. The m
_{D}-b_{M}problem of Dirac gauginos and its solutions. Phys. Rev. D**2014**, 89, 055005. [Google Scholar] [CrossRef] - Benakli, K.; Darmé, L.; Goodsell, M.D.; Harz, J. The Di-Photon Excess in a Perturbative SUSY Model. Nucl. Phys. B
**2016**, 911, 127–162. [Google Scholar] [CrossRef] - Nelson, A.E.; Roy, T.S. New Supersoft Supersymmetry Breaking Operators and a Solution to the μ Problem. Phys. Rev. Lett.
**2015**, 114, 201802. [Google Scholar] [CrossRef] [PubMed] - Alves, D.S.M.; Galloway, J.; McCullough, M.; Weiner, N. Goldstone Gauginos. Phys. Rev. Lett.
**2015**, 115, 161801. [Google Scholar] [CrossRef] - Alves, D.S.M.; Galloway, J.; McCullough, M.; Weiner, N. Models of Goldstone Gauginos. Phys. Rev. D
**2016**, 93, 075021. [Google Scholar] [CrossRef] - Haber, H.E.; Hempfling, R. The Renormalization group improved Higgs sector of the minimal supersymmetric model. Phys. Rev. D
**1993**, 48, 4280–4309. [Google Scholar] [CrossRef]

**Figure 1.**${Z}_{6}\left(Q\right)$ at the low energy scale Q against $tan\beta $ for the $N=2$ scale ${M}_{N=2}={M}_{\mathrm{SUSY}},{10}^{10}$ GeV and ${10}^{16}$ GeV [4].

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Benakli, K.; Chen, Y.; Lafforgue-Marmet, G.
Predicting Alignment in a Two Higgs Doublet Model. *Proceedings* **2019**, *13*, 2.
https://doi.org/10.3390/proceedings2019013002

**AMA Style**

Benakli K, Chen Y, Lafforgue-Marmet G.
Predicting Alignment in a Two Higgs Doublet Model. *Proceedings*. 2019; 13(1):2.
https://doi.org/10.3390/proceedings2019013002

**Chicago/Turabian Style**

Benakli, Karim, Yifan Chen, and Gaëtan Lafforgue-Marmet.
2019. "Predicting Alignment in a Two Higgs Doublet Model" *Proceedings* 13, no. 1: 2.
https://doi.org/10.3390/proceedings2019013002