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Abstract: We show that a non-abelian global SU(2)R R-symmetry acting on the quartic part of the
two Higgs Doublet Model leads, at tree-level, to an automatic alignment without decoupling. An
example of phenomenologically viable model with this feature is the the low energy effective field
theory of the Minimal Dirac Gaugino Supersymmetric Model in the limit where the adjoint scalars
are decoupled. We discuss here how the SU(2)R can be identified with the R-symmetry of the N = 2
supersymmetry in the gauge and Higgs sectors. We also review how the radiative corrections lead to
a very small misalignment.
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1. Introduction

The Standard Model Higgs is the only known fundamental spin zero particle in Nature. The
existence of additional fundamental scalars is not excluded and happens in Early Universe cosmological
and supersymmetric models. Such additional scalars could mix with the observable Higgs. This leads
to strong constraints from existing experimental data. In particular, this requires that the observed
Higgs is aligned with the direction acquiring a non-zero vacuum expectation value (v.e.v). This can be
achieved by decoupling the additional scalars by making them heavy enough. However, the alignment
can also be a consequence of a symmetry of the model in with case the new scalar masses could lie in a
range within the reach of future searches at the LHC . Such an alignment without decoupling [1] was
realized in [2] (see the discussion of the spectrum in Section 3 of [2]; the model was not engineered
for this purpose but as a scenario for supersymmetry breaking, and therefore we can consider the
alignment there as a "prediction” of the model) and discussed later in [3,4]. In particular, it was shown
in [4] that the alignment survives with an impressive precision when radiative corrections are taken
into account. The mechanisms behind this successful alignment are a combination of a global SU(2)R
symmetry of the quartic potential and diverse cancellations due to supersymmetry as discussed in [5]
and will be reviewed here.

The scalar potential of [2], studied in [6], is that of a Two Higgs Doublet Model (2HDM) (for an
introduction to 2HDM, see for example [7–9]). Alignment is not necessarily due to symmetries. Viable
cases have been discussed for example in [10–14] for the MSSM and NMSSM . However this looks as
an ad-hoc specific choice of the model parameters. One could search for symmetries of the 2HDM
(e.g., [15–17]) that imply alignment without decoupling [18,19]. Quite often they lead to problematic
phenomenological consequences, as massless quarks [20]. In the supersymmetric model of [2], the
alignment at tree-level is also a prediction of a symmetry: a non abelian R-symmetry. However, this
symmetry acts only on part of the Lagrangian and does not lead to phenomenological issues.
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In [2], the (non-chiral) gauge and Higgs states appear in an N = 2 supersymmetry sector while the
matter states, quarks and leptons, appear in an N = 1 sector. Early models suffered from the non-chiral
nature of quarks and leptons [21,22] as they have required that N = 2 supersymmetry acts on the
whole SM states. An important feature of [2,6,23–25] is that gauginos have Dirac masses [26–30]. The
N = 2 extension have implication for Higgs boson physics as discussed in [6,31–48]. We will review
here how this alignment emerges and how higher order corrections induce a small misalignment.

2. Higgs Alignment from an SU(2) Symmetry

We review here how to obtain alignment as a consequence of an SU(2) symmetry acting on the
quartic potential. Alignment as consequence of these relations between the different dimensionless
coupling is trivial and has been discussed by many authors, for example in [1,18]. However, these
works looked at symmetries of the whole Lagrangian and therefore they explicitly associate the
obtained alignment with equalities or vanishing squared-mass parameters. Here, the situation is a bit
different. By construction as we will discuss below, our SU(2) symmetry does not, and can not, act on
the quadratic part of the potential in contrast with previous works assumptions. We need to explain
why, still, this is enough to imply alignment. However, most useful to us, we want to read the amount
of misalignment as function of the decomposition under SU(2) of the quartic potential [5].

The standard parametrization of a generic 2HDM is (Here, for simplicity, we assume CP
conservation. All couplings and vacuum expectation values are assumed to be real.):

VEW = V2Φ + V4Φ (1)

where

V2Φ = m2
11Φ†

1Φ1 + m2
22Φ†

2Φ2 − [m2
12Φ†

1Φ2 + h.c]

V4Φ =
1
2

λ1(Φ†
1Φ1)

2 +
1
2

λ2(Φ†
2Φ2)

2

+λ3(Φ†
1Φ1)(Φ†

2Φ2) + λ4(Φ†
1Φ2)(Φ†

2Φ1)

+

[
1
2

λ5(Φ†
1Φ2)

2 + [λ6(Φ†
1Φ1) + λ7(Φ†

2Φ2)]Φ†
1Φ2 + h.c

]
, (2)

We expect the parameters λi to contain leading order tree-level values with corrections from loops
δλ

(rad)
i but also at tree-level δλ

(tree)
i from threshold corrections due to integration of heavy states:

λi =λ
(0)
i + δλ

(tree)
i + δλ

(rad)
i (3)

Now, put the two Higgs doublets together in a bi-doublet (Φ1, Φ2)
T where Φ1 and Φ2 can be

represented as columns with two entries. We then consider the SU(2) symmetry that rotates the two
doublets among themselves, therefore acting horizontally. We denote this group as SU(2)R (R stands
for R-symmetry as we will see below) and the two fields appear now in the fundamental representation
of the SU(2)R.

A potential that is invariant under SU(2)R will contain only singlets of SU(2)R and can be
written as:

V4Φ = λ|01,0>|01, 0〉 + λ|02,0>|02, 0〉 (4)

where |l, m > are the spin representation of SU(2)R in the standard notation. It is easy to check that:

|01, 0〉 = 1
2
[
(Φ†

1Φ1) + (Φ†
2Φ2)

]2 , (5)
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and

|02, 0〉 = − 1√
12

[(
(Φ†

1Φ1)− (Φ†
2Φ2)

)2
+ 4(Φ†

2Φ1)(Φ†
1Φ2)

]
(6)

while comparing with (2) gives:

λ|01,0> =
λ1 + λ2 + 2λ3

4
(7)

and

λ|02,0> = −λ1 + λ2 − 2λ3 + 4λ4

4
√

3
(8)

The absence of other |l, m >’s can be enforced by choosing

λ5 =λ6 = λ7 = 0. (9)

For the case of CP conserving Lagrangian under consideration, there are two CP even scalars with
squared-mass matrix in the Higgs basis (e.g., [15])

M2
h =

(
Z1v2 Z6v2

Z6v2 m2
A + Z5v2

)
. (10)

These are given by

Z1 =λ1c4
β + λ2s4

β +
1
2

λ345s2
2β,

Z5 =
1
4

s2
2β [λ1 + λ2 − 2λ345] + λ5

Z6 =− 1
2

s2β

[
λ1c2

β − λ2s2
β − λ345c2β

]
(11)

where λ345 ≡ λ3 + λ4 + λ5, while the pseudo-scalar mass mA is given by

m2
A =−

m2
12

sβcβ
− λ5v2 λ5=0−−−→ −

m2
12

sβcβ
(12)

Here, we have defined :

< Re(Φ0
2) > = vsβ, < Re(Φ0

1) > = vcβ, (13)

where:

cβ ≡ cos β, sβ ≡ sin β, tβ ≡ tan β , 0 6 β 6
π

2
c2β ≡ cos 2β, s2β ≡ sin 2β (14)

The off-diagonal squared-mass matrix element Z6 measures the displacement from alignment.
It can be written in the SU(2)R basis as

Z6 =
1
2

s2β

[√
2λ|1,0> −

√
6λ|2,0>c2β + (λ|2,−2> + λ|2,+2>)c2β.

]
(15)
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where we used the notation (see [16]):

|1, 0〉 = 1√
2

[
(Φ†

2Φ2)− (Φ†
1Φ1)

] [
(Φ†

1Φ1) + (Φ†
2Φ2)

]
|2, 0〉 = 1√

6

[
(Φ†

1Φ1)
2 + (Φ†

2Φ2)
2 − 2(Φ†

1Φ1)(Φ†
2Φ2)− 2(Φ†

1Φ2)(Φ†
2Φ1)

]
|2,+2〉 = (Φ†

2Φ1)(Φ†
2Φ1)

|2,−2〉 = (Φ†
1Φ2)(Φ†

1Φ2)

(16)

The coefficients appearing in (15) are given by:

λ|1,0> =
λ2 − λ1

2
√

2
SU(2)R−−−−→ 0

λ|2,0> =
λ1 + λ2 − 2λ3 − 2λ4√

24

SU(2)R−−−−→ 0

λ|2,+2> =
λ∗5
2

leading order−−−−−−−→ 0, λ|2,−2> =
λ5

2
leading order−−−−−−−→ 0. (17)

We see that the invariance under SU(2)R implies alignment. The breaking of SU(2)R even just to its
abelian sub-group spoils the alignment. Also, note that we have λ5 = 0, there is no contribution from
|2,±2 >.

The quadratic part of the scalar potential can be written as:

V2Φ =
m2

11 + m2
22√

2
× 1√

2

[
(Φ†

1Φ1) + (Φ†
2Φ2)

]
+

m2
11 −m2

22√
2

× 1√
2

[
(Φ†

1Φ1)− (Φ†
2Φ2)

]
−[m2

12Φ†
1Φ2 + h.c] (18)

where the only SU(2)R invariant part is given by the first line. The minimization of the potential leads
to (e.g., [49]):

0 = m2
11 − tβm2

12 +
1
2

v2c2
β(λ1 + λ6tβ + λ345t2

β + λ7t2
β)

0 = m2
22 −

1
tβ

m2
12 +

1
2

v2s2
β(λ2 + λ7

1
tβ

+ λ345
1
t2
β

+ λ6
1
t2
β

) (19)

Using that (17) implies λ1 = λ2 = λ345 ≡ λ and λ6 = λ7 = 0, the equations (19) become:

0 = m2
11 − tβm2

12 +
1
2

λv2 (20)

0 = m2
22 −

1
tβ

m2
12 +

1
2

λv2 (21)

which subtracted one of the other give (for s2β 6= 0)

0 =
1
2
(m2

11 −m2
22)s2β + m2

12c2β ≡ Z6v2 (22)

Thus the constraint of SU(2)R invariance of the quartic part of the potential implies an automatic
alignment without decoupling.



Proceedings 2019, 13, 2 5 of 11

3. A Model with SU(2)R Symmetry

In the context of supersymmetric theories, one way to obtain the SU(2)R described above is to
make of the two Higgs doublets one hypermultiplet (Φ1, Φ2)

T , the SU(2)R becomes an R-symmetry
and supersymmetry is extended to N = 2 in the Higgs sector. Now the SU(2)R R-symmetry will
act here as an SU(2) Higgs family symmetry [15,16], but now only on the quartic potential contains
only terms that are invariant (singlet) under SU(2)R. As the Higgs doublets quartic potential receives
contributions from D-terms, we must also extend the N = 2 supersymmetry to the gauge sector. This
implies the presence of chiral superfields in the adjoint representations of SM gauge group. These are
a singlet S and an SU(2) triplet T. We define

S =
SR + iSI√

2
(23)

T =
1
2

(
T0

√
2T+√

2T− −T0

)
, Ti =

1√
2
(TiR + iTiI) with i = 0,+,− (24)

They contribute to the superpotential by promoting the gauginos to Dirac fermions, but also by
generating new Higgs interactions through:

W =
√

2 mα
1DW1αS + 2

√
2 mα

2Dtr (W2αT) +
MS
2

S2 +
κ

2
S3 + MT tr(TT)

+µ Hu ·Hd + λSS Hu ·Hd + 2λT Hd · THu , (25)

where the Dirac masses are parametrized by spurion superfields mαiD = θαmiD where θα are the
Grassmannian superspace coordinates. The λS,T are not arbitrary as N = 2 supersymmetry implies

λS =
1√
2

gY, λT =
1√
2

g2 (26)

where gY and g2 stand for the hyper-charge and SU(2) gauge couplings, respectively. The Higgs
potential gets also contributions from soft supersymmetry breaking terms. We chose for simplicity the
parameters to be real and we write

Lsoft =m2
Hu
|Hu|2 + m2

Hd
|Hd|2 + Bµ(Hu · Hd + h.c)

+ m2
S|S|2 + 2m2

Ttr(T†T) +
1
2

BS

(
S2 + h.c

)
+ BT (tr(TT) + h.c.) (27)

+ AS (SHu · Hd + h.c) + 2AT (Hd · THu + h.c) +
Aκ

3

(
S3 + h.c.

)
+ AST (Str(TT) + h.c) .

A peculiar 2HDM, with an extended set of light charginos and neutralinos, is obtained by
integrating out of the adjoint scalars. The details of this potential were discussed in [6]. The result can
be mapped to (2) after the identification

Φ2 = Hu, Φi
1 = −εij(H j

d)
∗ ⇔

(
H0

d
H−d

)
=

(
Φ0

1
−(Φ+

1 )
∗

)
(28)

from which we can now read

m2
11 = m2

Hd
+ µ2, m2

22 = m2
Hu

+ µ2, m2
12 = Bµ. (29)
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and

λ
(0)
1 = λ

(0)
2 =

1
4
(g2

2 + g2
Y)

λ
(0)
3 =

1
4
(g2

2 − g2
Y) + 2λ2

T
N=2−−−→ 1

4
(5g2

2 − g2
Y)

λ
(0)
4 =− 1

2
g2

2 + λ2
S − λ2

T
N=2−−−→ −g2

2 +
1
2

g2
Y

λ5 = λ6 = λ7 = 0. (30)

as given in [4,6].
Again, restricting to the case of CP conserving Lagrangian, the two CP even scalars have

squared-mass matrix (10) with

Z1
N=2−−−→ 1

4
(g2

2 + g2
Y)

Z5
N=2−−−→ 0

Z6
N=2−−−→ 0. (31)

We use:

M2
Z =

g2
Y + g2

2
4

v2 , v ' 246GeV (32)

< HuR > = vsβ, < HdR >= vcβ, (33)

< SR > = vs , < TR >= vt (34)

Now mA is given by

m2
A =−

m2
12

sβcβ
− λ5v2 N=2−−−→ −

m2
12

sβcβ
(35)

and squared-mass matrix has eigenvalues:

m2
h =

1
4
(g2

2 + g2
Y)v

2 = M2
Z

m2
H = m2

A (36)

while the charged Higgs has a mass

m2
H+ =

1
2
(λ5 − λ4)v2 + m2

A
N=2−−−→ 1

2
(g2

2 −
1
2

g2
Y)v

2 + m2
A = 3M2

W −M2
Z + m2

A. (37)

Also, the leading-order squared-masses for the real part of the adjoint fields are [36]:

m2
SR =m2

S + 4m2
DY + BS, m2

TR = m2
T + 4m2

D2 + BT . (38)

where we have taken MS = MT = 0.
Let us turn now to the quadratic part of the potential. It can be written as (18). Imposing a Higgs

family symmetry would have required that both coefficients of the two SU(2)R non-singlets operators
to vanish, therefore m2

11 = m2
22 and m12 = 0. First, this would imply m2

A = 0 which is not a viable
feature. Second, the mass parameters in the quadratic potential under SU(2)R are controlled by the
supersymmetry breaking mechanism and this is not expected to preserve the R-symmetry. It was
shown in [30] that absence of tachyonic directions in the adjoint fields scalar potential implies that in a
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gauge mediation scenario that either breaking or messenger sectors should not be N = 2 invariant.
Thus, the quadratic potential can not be invariant under SU(2)R.

4. R-Symmetry Breaking and Misalignment

We have found above that invariance under SU(2)R symmetry of the quartic scalar potential is
sufficient to insure the Higgs alignment. This is because the symmetry relates different dimensionless
couplings and forces others to vanish in such a way that Z6 itself vanishes. However, this symmetry
will be broken at least by quantum corrections to the mentioned set of couplings from sectors of
the theory that do not respect the SU(2)R symmetry. Unexpectedly, it was found in [4] that these
corrections are very small. This was checked numerically including all threshold and two-loop effects
when they are known. Here, we would like to exhibit the structure of these corrections with respect to
group theoretical organization of the scalar potential in representations of SU(2)R .

We start by writing the quartic scalar potential as:

V4Φ = ∑
j,m

λ|j,m> × |j, m〉 (39)

where |j, m〉 are the irreducible representations of SU(2)R.
Here λ5 = 0, thus the misalignment is parametrized by

Z6 =
1
2

s2β

[√
2λ|1,0> −

√
6λ|2,0>c2β

]
(40)

We see that the conservation of the U(1)(diag)
R subgroup of SU(2)R is not sufficient for alignment as the

presence of either of |1, 0〉 or |2, 0〉 leads to misalignment.
In our model λ|i,0> are corrections generated by higher order corrections to the tree-level λ

(0)
|i,0>.

First, there are tree-level corrections corresponding to thresholds when integrating out adjoint scalars.
Note that the Higgs µ-term and the Dirac masses m1D, m2D are kept small , in the sub-TeV region.
We have:

δλ
(tree)
1 '−

(
gYm1D −

√
2λSµ

)2

m2
SR

−

(
g2m2D +

√
2λTµ

)2

m2
TR

δλ
(tree)
2 '−

(
gYm1D +

√
2λSµ

)2

m2
SR

−

(
g2m2D −

√
2λTµ

)2

m2
TR

δλ
(tree)
3 '

g2
Ym2

1D − 2λ2
Sµ2

m2
SR

−
g2

2m2
2D − 2λ2

Tµ2

m2
TR

δλ
(tree)
4 '

2g2
2m2

2D − 4λ2
Tµ2

m2
TR

, (41)

These induce

δV(tree)
4Φ = δλ

(tree)
|01,0>|01, 0〉+ δλ

(tree)
|02,0>|02, 0〉+ δλ

(tree)
|1,0> |1, 0〉+ δλ

(tree)
|2,0> |2, 0〉 . (42)

The corrections to the two singlet coefficients

δλ
(tree)
|01,0> '− 2λ2

S
µ2

m2
SR
− g2

2
m2

2D
m2

TR
(43)

δλ
(tree)
|02,0> '

1√
3

[
g2

Y
m2

1D
m2

SR
− 2g2

2
m2

2D
m2

TR
+ 6λ2

T
µ2

m2
TR

]
(44)
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do not contribute to a misalignment. The misalignment arises from the appearance of new terms in the
scalar potential:

δλ
(tree)
|1,0> '2g2λT

m2Dµ

m2
TR
− 2gYλS

m1Dµ

m2
SR

'
√

2g2
2

m2Dµ

m2
TR
−
√

2g2
Y

m1Dµ

m2
SR

δλ
(tree)
|2,0> '

√
2
3

[
g2

Y
m2

1D
m2

SR
+ g2

2
m2

2D
m2

TR

]
(45)

These preserve the subgroup U(1)(diag)
R . This is because the scalar potential results from integrating out

the adjoints which have zero U(1)(diag)
R charge. For a numerical estimate, we take mSR ' mTR ' 5 TeV,

m1D ' m1D ' µ ' 500 GeV, gY ' 0.37 and g2 ' 0.64. This gives

δλ
(tree)
|1,0> '4× 10−3, δλ

(tree)
|2,0> ' 4.5× 10−3 (46)

This shows that this contribution to Z6 can be neglected.
We consider now the misalignment from quantum corrections. Supersymmetry breaking induces

mass splitting between scalars and fermionic partners that lead to radiative corrections.
Loops of the adjoint scalar fields S and Ta do not lead to any contribution as long as their

couplings λS and λT are given by their N = 2 values, which is the leading order approximation.
This is a consequence of the facts that these scalars are singlets under the SU(2)R symmetry and at
leading order and their interactions with the two Higgs doublets preserve SU(2)R. The absence of a
contribution to Z6 was obtained by explicit calculations of the loop diagrams in Equation (3.5) of [4].
It was found that when summed up different contributions to Z6 cancel out. This result is now easily
understood as a consequence of the SU(2)R symmetry.

Let’s denote by Da for the gauge fields Aa and Fa
Σ the auxiliary fields for the adjoint scalars

Σa ∈ {S, Ta} of U(1)Y and SU(2) respectively. The set:

(Fa
Σ, Da, Fa

Σ
∗) (47)

constitutes a triplet of SU(2)R thus implying the equalities λS = gY/
√

2 and λT = g2/
√

2 in
Equation (26). The violation of these relations by quantum effects translates into breaking of SU(2)R.
The correction due to running of the couplings λS and λT leads to a violation of N = 2 relations (26).
This arises first from the radiative corrections from N = 1 chiral matter. As λ1 and λ2 are affected in
the same way, we have δλ

(2→1)
|1,0> = 0, and using (17), we get:

δZ(2→1)
6 =

√
6

2
s2β c2β δλ

(2→1)
|2,0>

= −1
2

tβ(t2
β − 1)

(1 + t2
β)

2

[
(2λ2

S − g2
Y) + (2λ2

T − g2
2)
]

(48)

In addition to the misalignment from the N = 2→ N = 1 described above, there is a contribution
from the N = 1→ N = 0 mass splitting in chiral superfields. The difference in Yukawa couplings to
the two Higgs doublets breaks the SU(2)R symmetry. For tβ ∼ O(1), the biggest contribution is to λ2

from stop loops due to their large Yukawa coupling:

δλ2 ∼
3y4

t
8π2 log

m2
t̃

Q2 (49)
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Here Q, yt, mt̃ are the renormalisation scale, the top Yukawa coupling and the stop mass, respectively.
At the end we get:

Z6 ≈
0.12
tβ
−

tβ(t2
β − 1)

(1 + t2
β)

2

[
(2λ2

S − g2
Y) + (2λ2

T − g2
2)
]

. (50)

We find that the misalignment comes from the squark corrections are compensated by the effect of
running λS, λT . The numerical results are shown in Figure 1, taken from [4].

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

tanβ 

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Z
6
(Q

)

M
N=2 =1010 GeV

MN=2 =1016  GeV

MN=2 =MSUSY

10 15 20 25 30

Figure 1. Z6(Q) at the low energy scale Q against tan β for the N = 2 scale MN=2 = MSUSY, 1010 GeV
and 1016 GeV [4].
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