Entropic Analysis of the Quantum Oscillator with a Minimal Length †
Abstract
:1. Introduction
2. Results
2.1. Quantum Oscillator Wavefunctions with a Minimal Length
2.2. Behavior of the Sum of Rényi Entropies
3. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 1927, 43, 172. [Google Scholar] [CrossRef]
- Maccone, L.; Pati, A.K. Stronger uncertainty relations for all incompatible observables. Phys. Rev. Lett. 2014, 113, 260401. [Google Scholar] [CrossRef] [PubMed]
- Bialynicki-Birula, I.; Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 1975, 44, 129–132. [Google Scholar] [CrossRef]
- Maassen, H.; Uffink, J.B.M. Generalized entropic uncertainty relations. Phys. Rev. Lett. 1988, 60, 1103. [Google Scholar] [CrossRef] [PubMed]
- Zozor, S.; Portesi, M.; Vignat, C. Some extensions of the uncertainty principle. Physica A 2008, 387, 4800–4808. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Rudnicki, Ł. Entropic uncertainty relations in quantum physics. In Statistical Complexity; Springer: Dordrecht, The Netherlands, 2011; Sen, K., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 1–34. [Google Scholar]
- Kempf, A.; Mangano, G.; Mann, R.B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 1995, 52, 1108. [Google Scholar] [CrossRef] [PubMed]
- Pedram, P. A higher order GUP with minimal length uncertainty and maximal momentum. Phys. Lett. B 2012, 714, 317–323. [Google Scholar] [CrossRef]
- Pedram, P. A higher order GUP with minimal length uncertainty and maximal momentum. II: Applications. Phys. Lett. B 2012, 718, 638–645. [Google Scholar] [CrossRef]
- Hossenfelder, S. Minimal length scale scenarios for quantum gravity. Living Rev. Relativ. 2013, 16, 2. [Google Scholar] [CrossRef] [PubMed]
- Pikovski, I.; Vanner, M.R.; Aspelmeyer, M.; Kim, M.S.; Brukner, C. Probing Planck-scale physics with quantum optics. Nat. Phys. 2012, 8, 393–397. [Google Scholar] [CrossRef]
- Chang, L.N.; Minic, D.; Okamura, N.; Takeuchi, T. Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations. Phys. Rev. D 2002, 65, 125027. [Google Scholar] [CrossRef]
- Pedram, P. The minimal length and the Shannon entropic uncertainty relation. Adv. High Energy Phys. 2016, 5101389. [Google Scholar] [CrossRef]
- Rastegin, A.E. On entropic uncertainty relations in the presence of a minimal length. Ann. Phys. 2017, 382, 170–180. [Google Scholar] [CrossRef]
0.876 | 0.723 | 0.565 | 0.899 | 0.808 | 0.690 | ||
1.119 | 0.859 | 0.640 | 1.229 | 1.227 | 1.153 | ||
1.242 | 0.916 | 0.669 | 1.432 | 1.424 | 1.285 | ||
1.322 | 0.949 | 0.685 | 1.582 | 1.533 | 1.341 | ||
1.380 | 0.971 | 0.695 | 1.700 | 1.599 | 1.370 | ||
1.424 | 0.987 | 0.701 | 1.798 | 1.642 | 1.388 |
0.974 | 1.167 | 1.356 | 2.123 | 2.205 | 2.290 | ||
1.276 | 1.506 | 1.717 | 2.723 | 2.939 | 3.106 | ||
1.426 | 1.623 | 1.819 | 3.084 | 3.307 | 3.417 | ||
1.517 | 1.668 | 1.855 | 3.346 | 3.526 | 3.585 | ||
1.576 | 1.684 | 1.868 | 3.552 | 3.673 | 3.693 | ||
1.615 | 1.688 | 1.872 | 3.719 | 3.776 | 3.770 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puertas-Centeno, D.; Portesi, M. Entropic Analysis of the Quantum Oscillator with a Minimal Length. Proceedings 2019, 12, 57. https://doi.org/10.3390/proceedings2019012057
Puertas-Centeno D, Portesi M. Entropic Analysis of the Quantum Oscillator with a Minimal Length. Proceedings. 2019; 12(1):57. https://doi.org/10.3390/proceedings2019012057
Chicago/Turabian StylePuertas-Centeno, David, and Mariela Portesi. 2019. "Entropic Analysis of the Quantum Oscillator with a Minimal Length" Proceedings 12, no. 1: 57. https://doi.org/10.3390/proceedings2019012057
APA StylePuertas-Centeno, D., & Portesi, M. (2019). Entropic Analysis of the Quantum Oscillator with a Minimal Length. Proceedings, 12(1), 57. https://doi.org/10.3390/proceedings2019012057