Dissipative Synthesis of Mechanical Fock-Like States †
Abstract
:1. Introduction
2. Results
3. Discussion
Acknowledgments
Conflicts of Interest
References
- Maunz, P.; Puppe, T.; Schuster, I.; Syassen, N.; Pinkse, P.W.H.; Rempe, G. Cavity cooling of a single atom. Nature (Lond.) 2004, 428, 50–52. [Google Scholar] [CrossRef] [PubMed]
- Leibrandt, D.R.; Labaziewicz, J.; Vuletić, V.; Chuang, I.L. Cavity Sideband Cooling of a Single Trapped Ion. Phys. Rev. Lett. 2009, 103, 103001. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.; Alegre, T.P.M.; Safavi-Naeini, A.H.; Hill, J.T.; Krause, A.; Gröblacher, S.; Aspelmeyer, M.; Painter, O. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 2011, 478, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Teufel, J.D.; Donner, T.; Li, D.; Harlow, J.W.; Allman, M.S.; Cicak, K.; Sirois, A.J.; Whittaker, J.D.; Lehnert, K.W.; Simmonds, R.W. Sideband cooling of micromechanical motion to the quantum ground state. Nature 2011, 475, 359–363. [Google Scholar] [CrossRef]
- Verhagen, E.; Delèglise, S.; Weis, S.; Schliesser, A.; Kippenberg, T.J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 2012, 482, 63–67. [Google Scholar] [CrossRef]
- Wollman, E.E.; Lei, C.U.; Weinstein, A.J.; Suh, J.; Kronwald, A.; Marquardt, F.; Clerk, A.A.; Schwab, K.C. Quantum squeezing of motion in a mechanical resonator. Science 2015, 349, 952–955. [Google Scholar] [CrossRef]
- Pirkkalainen, J.-M.; Damskägg, E.; Brandt, M.; Massel, F.; Sillanpää, M.A. Squeezing of quantum noise of motion in a micromechanical resonator. Phys. Rev. Lett. 2015, 115, 243601. [Google Scholar] [CrossRef]
- Lecocq, F.; Clark, J.B.; Simmonds, R.W.; Aumentado, J.; Teufel, J.D. Quantum nondemolition measurement of a nonclassical state of a massive object. Phys. Rev. X 2015, 5, 041037. [Google Scholar] [CrossRef]
- Kienzler, D.; Lo, H.-Y.; Keitch, B.; de Clercq, L.; Leupold, F.; Lindenfelser, F.; Marinelli, M.; Negnevitsky, V.; Home, J.P. Quantum harmonic oscillator state synthesis by reservoir engineering. Science 2015, 347, 6217. [Google Scholar] [CrossRef]
- Poyatos, J.F.; Cirac, J.I.; Zoller, P. Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett. 1996, 77, 4728. [Google Scholar] [CrossRef]
- Kronwald, A.; Marquardt, F.; Clerk, A.A. Arbitrarily large steady-state bosonic squeezing via dissipation. Phys. Rev. A 2013, 88, 063833. [Google Scholar] [CrossRef]
- Wang, Y.-D.; Clerk, A.A. Reservoir-engineered entanglement in optomechanical systems. Phys. Rev. Lett. 2013, 110, 253601. [Google Scholar] [CrossRef] [PubMed]
- Woolley, M.J.; Clerk, A.A. Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir. Phys. Rev. A 2014, 89, 063805. [Google Scholar] [CrossRef]
- Li, J.; Haghighi, I.M.; Malossi, N.; Zippilli, S.; Vitali, D. Generation and detection of large and robust entanglement between two different mechanical resonators in cavity optomechanics. New J. Phys. 2015, 17, 103037. [Google Scholar] [CrossRef]
- Tan, H.; Bariani, F.; Li, G.; Meystre, P. Generation of macroscopic quantum superpositions of optomechanical oscillators by dissipation. Phys. Rev. A 2013, 88, 023827. [Google Scholar] [CrossRef]
- Asjad, M.; Vitali, D. Reservoir engineering of a mechanical resonator: Generating a macroscopic superposition state and monitoring its decoherence. J. Phys. B 2014, 47, 045502. [Google Scholar] [CrossRef]
- Brunelli, M.; Houhou, O.; Moore, D.W.; Nunnenkamp, A.; Paternostro, M.; Ferraro, A. Unconditional preparation of nonclassical states via linear-and-quadratic optomechanics. Phys. Rev. A 2018, 98, 063801. [Google Scholar] [CrossRef]
- Brunelli, M.; Houhou, O. Linear and quadratic reservoir engineering of non-Gaussian states. Phys. Rev. A 2019, 100, 013831. [Google Scholar] [CrossRef]
- Thompson, J.D.; Zwickl, B.M.; Jayich, A.M.; Marquardt, F.; Girvin, S.M.; Harris, J.G.E. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 2008, 452, 72. [Google Scholar] [CrossRef]
- Sankey, J.C.; Yang, C.; Zwickl, B.M.; Jayich, A.M.; Harris, J.G.E. Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys. 2010, 6, 707–712. [Google Scholar] [CrossRef]
- Purdy, T.P.; Brooks, D.W.C.; Botter, T.; Brahms, N.; Ma, Z.-Y.; Stamper-Kurn, D.M. Tunable cavity optomechanics with ultracold atoms. Phys. Rev. Lett. 2010, 105, 133602. [Google Scholar] [CrossRef] [PubMed]
- Karuza, M.; Galassi, M.; Biancofiore, C.; Molinelli, C.; Natali, R.; Tombesi, P.; di Giuseppe, G.; Vitali, D. Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: Theory and experiment. J. Opt. 2012, 15, 025704. [Google Scholar] [CrossRef]
- Doolin, C.; Hauer, B.D.; Kim, P.H.; MacDonald, A.J.R.; Ramp, H.; Davis, J.P. Nonlinear optomechanics in the stationary regime. Phys. Rev A 2014, 89, 053838. [Google Scholar] [CrossRef]
- Paraïso, T.K.; Kalaee, M.; Zang, L.; Pfeifer, H.; Marquardt, F.; Painter, O. Position-squared coupling in a tunable photonic crystal optomechanical cavity. Phys. Rev. X 2015, 5, 041024. [Google Scholar] [CrossRef]
- Kalaee, M.; Paraïso, T.K.; Pfeifer, H.; Painter, O. Design of a quasi-2D photonic crystal optomechanical cavity with tunable, large x2-coupling. Opt. Express 2016, 24, 21308. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunelli, M.; Houhou, O. Dissipative Synthesis of Mechanical Fock-Like States. Proceedings 2019, 12, 25. https://doi.org/10.3390/proceedings2019012025
Brunelli M, Houhou O. Dissipative Synthesis of Mechanical Fock-Like States. Proceedings. 2019; 12(1):25. https://doi.org/10.3390/proceedings2019012025
Chicago/Turabian StyleBrunelli, Matteo, and Oussama Houhou. 2019. "Dissipative Synthesis of Mechanical Fock-Like States" Proceedings 12, no. 1: 25. https://doi.org/10.3390/proceedings2019012025
APA StyleBrunelli, M., & Houhou, O. (2019). Dissipative Synthesis of Mechanical Fock-Like States. Proceedings, 12(1), 25. https://doi.org/10.3390/proceedings2019012025