Economic Benefits of Biological Pest Control in Urban Forestry: A Sustainable Management Approach †
Abstract
:1. Introduction
2. Biological Pest Control vs. Chemical Pest Control
2.1. Economic Efficiency of Biological Pest Control
2.2. Advantages and Disadvantages of Biological Pest Control
3. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SDG | Sustainable Development Goal |
EU | European Union |
CBC | Classical Biological Control |
CAV | Change in Appraised Value |
AVC | Aesthetic Value Change |
References
- Mouratidis, K. Urban planning and quality of life: A review of pathways linking the built environment to subjective well-being. Cities 2021, 115, 103229. [Google Scholar] [CrossRef]
- Turner-Skoff, J.B.; Cavender, N. The benefits of trees for livable and sustainable communities. Plants People Planet 2019, 1, 323–335. [Google Scholar] [CrossRef]
- Tan, P.Y.; Zhang, J.; Masoudi, M.; Alemu, J.B.; Edwards, P.J.; Grêt-Regamey, A.; Richards, D.R.; Saunders, J.; Song, X.P.; Wong, L.W. A conceptual framework to untangle the concept of urban ecosystem services. Landsc. Urban Plan. 2020, 200, 103837. [Google Scholar] [CrossRef] [PubMed]
- Hirabayashi, S. Technical specifications of urban forests for air purification: A case study in Tokyo, Japan. Trees For. People 2021, 4, 100078. [Google Scholar] [CrossRef]
- Hoppa, A.; Sikorska, D.; Przybysz, A.; Melon, M.; Sikorski, P. The role of trees in winter air purification on children’s routes to school. Forests 2022, 13, 40. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.H.; Wang, C.; Myint, S.W. Environmental cooling provided by urban trees under extreme heat and cold waves in US cities. Remote Sens. Environ. 2019, 227, 28–43. [Google Scholar] [CrossRef]
- Schwaab, J.; Meier, R.; Mussetti, G.; Seneviratne, S.; Bürgi, C.; Davin, E.L. The role of urban trees in reducing land surface temperatures in European cities. Nat. Commun. 2021, 12, 6763. [Google Scholar] [CrossRef] [PubMed]
- Greksa, A.; Ljevnaić-Mašić, B.; Grabić, J.; Benka, P.; Radonić, V.; Blagojević, B.; Sekulić, M. Potential of urban trees for mitigating heavy metal pollution in the city of Novi Sad, Serbia. Environ. Monit. Assess. 2019, 191, 636. [Google Scholar] [CrossRef]
- Ozdemir, H. Mitigation impact of roadside trees on fine particle pollution. Sci. Total Environ. 2019, 659, 1176–1185. [Google Scholar] [CrossRef]
- Ysebaert, T.; Koch, K.; Samson, R.; Denys, S. Green walls for mitigating urban particulate matter pollution—A review. Urban For. Urban Green. 2021, 59, 127014. [Google Scholar] [CrossRef]
- Santos, T.; Mendes, R.N.; Vasco, A. Recreational activities in urban parks: Spatial interactions among users. J. Outdoor Recreat. Tour. 2016, 15, 1–9. [Google Scholar] [CrossRef]
- Massoni, E.S.; Barton, D.N.; Rusch, G.M.; Gundersen, V. Bigger, more diverse and better? Mapping structural diversity and its recreational value in urban green spaces. Ecosyst. Serv. 2018, 31, 502–516. [Google Scholar] [CrossRef]
- Grima, N.; Corcoran, W.; Hill-James, C.; Langton, B.; Sommer, H.; Fischer, B. The importance of urban natural areas and urban ecosystem services during the COVID-19 pandemic. PLoS ONE 2020, 15, e0243344. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.; Sanesi, G. COVID-19 and the importance of urban green spaces. Urban For. Urban Green. 2022, 74, 127654. [Google Scholar] [CrossRef]
- Beckmann-Wübbelt, A.; Fricke, A.; Sebesvari, Z.; Yakouchenkova, I.A.; Fröhlich, K.; Saha, S. High public appreciation for the cultural ecosystem services of urban and peri-urban forests during the COVID-19 pandemic. Sustain. Cities Soc. 2021, 74, 103240. [Google Scholar] [CrossRef]
- United Nations. The Sustainable Development Goals Report 2023, Special ed.; Towards a Rescue Plan for People and Planet; United Nations: New York, NY, USA, 2023. [Google Scholar]
- Eurostat. Population Living in Households Considering That They Suffer from Noise, by Poverty Status. Eurostat. 2024. Available online: https://ec.europa.eu/eurostat/databrowser/view/sdg_11_20/default/table?lang=en (accessed on 8 April 2025).
- European Commission. Urban Environment. Available online: https://environment.ec.europa.eu/topics/urban-environment_en (accessed on 30 March 2024).
- Paap, T.; Burgess, T.I.; Wingfield, M.J. Urban trees: Bridge-heads for forest pest invasions and sentinels for early detection. Biol. Invasions 2017, 19, 3515–3526. [Google Scholar] [CrossRef]
- Tubby, K.V.; Webber, J.F. Pests and diseases threatening urban trees under a changing climate. Forestry 2010, 83, 451–459. [Google Scholar] [CrossRef]
- Meftaul, I.M.; Venkateswarlu, K.; Dharmarajan, R.; Annamalai, P.; Megharaj, M. Pesticides in the urban environment: A potential threat that knocks at the door. Sci. Total Environ. 2020, 711, 134612. [Google Scholar] [CrossRef]
- Martínez-Sastre, R.; García, D.; Miñarro, M.; Martín-López, B. Farmers’ perceptions and knowledge of natural enemies as providers of biological control in cider apple orchards. J. Environ. Manag. 2020, 266, 110589. [Google Scholar] [CrossRef]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Musolin, D.L.; Kirichenko, N.I.; Karpun, N.N.; Aksenenko, E.V.; Golub, V.B.; Kerchev, I.A.; Mandelshtam, M.Y.; Vasaitis, R.; Volkovitsh, M.G.; Zhuravleva, E.N.; et al. Invasive insect pests of forests and urban trees in Russia: Origin, pathways, damage, and management. Forests 2022, 13, 521. [Google Scholar] [CrossRef]
- Kenis, M.; Hurley, B.P.; Hajek, A.E.; Cock, M.J. Classical biological control of insect pests of trees: Facts and figures. Biol. Invasions 2017, 19, 3401–3417. [Google Scholar] [CrossRef]
- Gutsch, M.; Larondelle, N.; Haase, D. Of bugs and men: How forest pests and their management strategies are perceived by visitors of an urban forest. Urban For. Urban Green. 2019, 41, 248–254. [Google Scholar] [CrossRef]
- Jetter, K.; Paine, T.D. Consumer preferences and willingness to pay for biological control in the urban landscape. Biol. Control 2004, 30, 312–322. [Google Scholar] [CrossRef]
- Paine, T.D.; Millar, J.G.; Hanks, L.M.; Gould, J.; Wang, Q.; Daane, K.; Dahlsten, D.L.; Mcpherson, E.G. Cost–benefit analysis for biological control programs that targeted insect pests of eucalypts in urban landscapes of California. J. Econ. Entomol. 2015, 108, 2497–2504. [Google Scholar] [CrossRef]
- McPherson, E.G.; Simpson, J.R.; Peper, P.J.; Xiao, Q. Benefit-cost analysis of Modesto’s municipal urban forest. J. Arboric. 1999, 25, 235–248. [Google Scholar] [CrossRef]
- Rusch, A.; Valantin-Morison, M.; Sarthou, J.P.; Roger-Estrade, J. Biological control of insect pests in agroecosystems: Effects of crop management, farming systems, and seminatural habitats at the landscape scale: A review. Adv. Agron. 2010, 109, 219–259. [Google Scholar]
- Rusch, A.; Bommarco, R.; Ekbom, B. Conservation biological control in agricultural landscapes. Adv. Bot. Res. 2017, 81, 333–360. [Google Scholar]
- Goldberger, J.R.; Lehrer, N. Biological control adoption in western US orchard systems: Results from grower surveys. Biol. Control 2016, 102, 101–111. [Google Scholar] [CrossRef]
- Shogren, C.; Paine, T.D. Economic Benefit for Cuban Laurel Thrips Biological Control. J. Econ. Entomol. 2016, 109, 93–99. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Kitsiou, F.; Natsiopoulos, D.; Eliopoulos, P.A. Entomopathogenic fungi: Interactions and applications. Encyclopedia 2022, 2, 646–656. [Google Scholar] [CrossRef]
- Jetter, K.; Klonsky, K.; Pickett, C.H. A cost/benefit analysis of the ash whitefly biological control program in California. J. Arboric. 1997, 23, 65–72. [Google Scholar] [CrossRef]
- Pickett, C.H.; Ball, J.C.; Casanave, K.C.; Klonsky, K.M.; Jetter, K.M.; Bezark, L.G.; Schoenig, S.E. Establishment of the Ash Whitefly Parasitoid Encarsia inaron (Walker) and Its Economic Benefit to Ornamental Street Trees in California. Biol. Control 1996, 6, 260–272. [Google Scholar] [CrossRef]
- Page, A.R.; Lacey, K.L. Economic Impact Assessment of Australian Weed Biological Control; CRC for Australian Weed Management, Technical Series #10; University of Adelaide: Adelaide, Australia, 2006. [Google Scholar]
- Van Wilgen, B.W.; De Lange, W.J. The costs and benefits of biological control of invasive alien plants in South Africa. Afr. Entomol. 2011, 19, 504–514. [Google Scholar] [CrossRef]
- Valente, C.; Gonçalves, C.I.; Monteiro, F.; Gaspar, J.; Silva, M.; Sottomayor, M.; Paiva, M.R.; Branco, M. Economic outcome of classical biological control: A case study on the Eucalyptus snout beetle, Gonipterus platensis, and the parasitoid Anaphes nitens. Ecol. Econ. 2018, 149, 40–47. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, P.; Ma, C.; Ali, M.Y.; Gao, G.; Lu, Z.; Zalucki, M.P. Is Orius sauteri Poppius a promising biological control agent for walnut aphids? An assessment from the laboratory to field. Insects 2021, 12, 25. [Google Scholar] [CrossRef]
- Cullen, R.; Warner, K.D.; Jonsson, M.; Wratten, S.D. Economics and adoption of conservation biological control. Biol. Control 2008, 45, 272–280. [Google Scholar] [CrossRef]
- Goldson, S.L.; Wratten, S.D.; Ferguson, C.M.; Gerard, P.J.; Barratt, B.I.P.; Hardwick, S.; McNeill, M.R.; Phillips, C.B.; Popay, A.J.; Tylianakis, J.M.; et al. If and when successful classical biological control fails. Biol. Control 2014, 72, 76–79. [Google Scholar] [CrossRef]
- Meidenbauer, K.L.; Stenfors, C.U.; Bratman, G.N.; Gross, J.J.; Schertz, K.E.; Choe, K.W.; Berman, M.G. The affective benefits of nature exposure: What’s nature got to do with it? J. Environ. Psychol. 2020, 72, 101498. [Google Scholar] [CrossRef]
- Hamed, A.M.; El-Sherbini, M.S.; Abdeltawab, M.S. Eco-friendly mosquito-control strategies: Advantages and disadvantages. Egypt. Acad. J. Biol. Sci. E Med. Entomol. Parasitol. 2022, 14, 17–31. [Google Scholar] [CrossRef]
- Lee, Y.F.; Ligunjang, J.; Yong, S.C. Urban forestry and its relevance to tourism development in Sabah. In Proceedings of the Asia Europe Meeting Symposium on Urban Forestry, Beijing, China, 29 November–3 December 2004. [Google Scholar]
- Wolf, K.L. The environmental psychology of shopping. Res. Rev. 2007, 14, 39. [Google Scholar]
- Ko, Y. Trees and vegetation for residential energy conservation: A critical review for evidence-based urban greening in North America. Urban For. Urban Green. 2018, 34, 318–335. [Google Scholar] [CrossRef]
- Hoddle, M.S.; Van Driesche, R.G. Biological control of insect pests. In Encyclopedia of Insects, 2nd ed.; Resh, V.H., Cardé, R.T., Eds.; Academic Press: Cambridge, MA, USA, 2009; pp. 91–101. [Google Scholar]
Advantages | Explanation | Disadvantages | Explanation |
---|---|---|---|
Long-term Cost Efficiency [2,25,33]. | Biological pest control leads to substantial economic benefits in the long term [2,25,33]. | Initial Setup Cost/Research and Development cost [41]. | This kind of program can be expensive due to research and development costs [41]. |
Enhanced Ecosystem Services [3]. | Healthier urban forests, improved ecosystem services (air and water purification, indirect economic benefits for the local community) [3]. | Unpredictable Effectiveness /Often failures [42]. | Variable effectiveness of biological control can lead to unsuccessful treatment of the pests and potential financial risks [42]. |
Improved Public Health [43]. | Reduced pesticide, fewer health issues among residents [43], decreasing healthcare costs. | Time-Intensive/Slow Effect [44]. | Biological control methods often take longer to show results compared to chemical treatments [44], potentially leading to higher short-term management costs. |
Tourism and Recreation [45]. | Attractive and healthy urban forests can boost local tourism and recreation-related revenue [45]. | Systematic application/More knowledge required [32]. | Biological control methods demand more systematic application and require more knowledge from the user compared with other methods [32] and more trained personnel [44]. |
Increased Property Values [46]. | Well-maintained urban forests can enhance property values in surrounding areas [46]. | ||
Energy Savings [47]. | Healthier trees, better shade and wind protection, reduced energy costs for cooling, and heating nearby buildings [47]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiaras, S.; Koulelis, P.P.; Petrakis, P.V. Economic Benefits of Biological Pest Control in Urban Forestry: A Sustainable Management Approach. Proceedings 2025, 117, 21. https://doi.org/10.3390/proceedings2025117021
Tsiaras S, Koulelis PP, Petrakis PV. Economic Benefits of Biological Pest Control in Urban Forestry: A Sustainable Management Approach. Proceedings. 2025; 117(1):21. https://doi.org/10.3390/proceedings2025117021
Chicago/Turabian StyleTsiaras, Stefanos, Panagiotis P. Koulelis, and Panos V. Petrakis. 2025. "Economic Benefits of Biological Pest Control in Urban Forestry: A Sustainable Management Approach" Proceedings 117, no. 1: 21. https://doi.org/10.3390/proceedings2025117021
APA StyleTsiaras, S., Koulelis, P. P., & Petrakis, P. V. (2025). Economic Benefits of Biological Pest Control in Urban Forestry: A Sustainable Management Approach. Proceedings, 117(1), 21. https://doi.org/10.3390/proceedings2025117021