Unlocking New Frontiers in Cell Signaling and Communication and Fostering New Collaborative Interactions and Scientific Initiatives: Lessons Learned from the International Cellular Communication Network Society (ICCNS) Workshop †
Abstract
:1. Introduction
2. A Genetic Approach to Understanding the Biological Functions of Brain CCN Proteins
3. Towards a Better Understanding of the Biological Activities of CCN2 and Its Influence on the Metabolome and Connectome in Vascular Cells
4. The DNA Origami Promises
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BVO(s) | Blood vessel organoid(s) |
CCN | Cellular communication network |
References
- Brigstock, D.; Lau, L.; Perbal, B. Report and abstracts of the 3rd International Workshop on the CCN Family of Genes. St Malo, France, 20–23 October 2004. J. Clin. Pathol. 2005, 58, 463–478. [Google Scholar] [CrossRef] [PubMed]
- Attramadal, H.; Weiskirchen, R.; Perbal, B. Report on the 12th international workshop on the CCN family of genes, Oslo, June 20–23, 2024. J. Cell Commun. Signal. 2024, 18, e12049. [Google Scholar] [CrossRef] [PubMed]
- Perbal, B.; Weiskirchen, R. Association for research on biosignaling and communication first world conference on cellular communication and signaling. J. Cell Commun. Signal. 2024, 18, e12048. [Google Scholar] [CrossRef] [PubMed]
- Weiskirchen, R. CCN proteins in normal and injured liver. Front. Biosci. 2011, 16, 1939–1961. [Google Scholar] [CrossRef]
- Perbal, B.; Tweedie, S.; Bruford, E. The official unified nomenclature adopted by the HGNC calls for the use of the acronyms, CCN1-6, and discontinuation in the use of CYR61, CTGF, NOV and WISP 1-3 respectively. J. Cell Commun. Signal. 2018, 12, 625–629. [Google Scholar] [CrossRef]
- Terburg, D.; Scheggia, D.; Triana Del Rio, R.; Klumpers, F.; Ciobanu, A.C.; Morgan, B.; Montoya, E.R.; Bos, P.A.; Giobellina, G.; van den Burg, E.H.; et al. The Basolateral Amygdala Is Essential for Rapid Escape: A Human and Rodent Study. Cell 2018, 175, 723–735.e16. [Google Scholar] [CrossRef]
- Chang, H.C.; Ng, C.H.; Chen, Y.F.; Wang, Y.C.; Yu, I.S.; Lee, L.J.; Lee, L.J.; Lee, K.Y. Elevated reactive aggression in forebrain-specific Ccn2 knockout mice. J. Cell Commun. Signal. 2024, 18, e12040. [Google Scholar] [CrossRef]
- Yu, I.S.; Chang, H.C.; Chen, K.C.; Lu, Y.L.; Shy, H.T.; Chen, C.Y.; Lee, K.Y.; Lee, L.J. Genetic Elimination of Connective Tissue Growth Factor in the Forebrain Affects Subplate Neurons in the Cortex and Oligodendrocytes in the Underlying White Matter. Front. Neuroanat. 2019, 13, 16. [Google Scholar] [CrossRef]
- Bester-Meredith, J.K.; Burns, J.N.; Dang, M.N.; Garcia, A.M.; Mammarella, G.E.; Rowe, M.E.; Spatacean, C.F. Blocking olfactory input alters aggression in male and female California mice (Peromyscus californicus). Aggress. Behav. 2022, 48, 290–297. [Google Scholar] [CrossRef]
- Mucignat-Caretta, C.; Bondi’, M.; Caretta, A. Animal models of depression: Olfactory lesions affect amygdala, subventricular zone, and aggression. Neurobiol. Dis. 2004, 16, 386–395. [Google Scholar] [CrossRef]
- Turner, C.A.; Sharma, V.; Hagenauer, M.H.; Chaudhury, S.; O’Connor, A.M.; Hebda-Bauer, E.K.; Thompson, R.C.; Myers, R.M.; Bunney, W.E.; Barchas, J.D.; et al. Connective Tissue Growth Factor Is a Novel Prodepressant. Biol. Psychiatry 2018, 84, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Miczek, K.A. Neurogenetics of aggressive behavior: Studies in rodents. Curr. Top. Behav. Neurosci. 2014, 17, 3–44. [Google Scholar] [CrossRef] [PubMed]
- Su, B.Y.; Cai, W.Q.; Xiong, Y.; Zhang, C.G.; Perbal, B. Relationships between learning and memory and expression of nov gene of rats. Sheng Li Xue Bao 2000, 52, 290–294. [Google Scholar] [PubMed]
- Su, B.Y.; Cai, W.Q.; Zhang, C.G.; Martinez, V.; Lombet, A.; Perbal, B. The expression of ccn3 (nov) RNA and protein in the rat central nervous system is developmentally regulated. Mol. Pathol. 2001, 54, 184–191. [Google Scholar] [CrossRef]
- van Roeyen, C.R.; Eitner, F.; Scholl, T.; Boor, P.; Kunter, U.; Planque, N.; Gröne, H.J.; Bleau, A.M.; Perbal, B.; Ostendorf, T.; et al. CCN3 is a novel endogenous PDGF-regulated inhibitor of glomerular cell proliferation. Kidney Int. 2008, 73, 86–94. [Google Scholar] [CrossRef]
- Kawaki, H.; Kubota, S.; Suzuki, A.; Lazar, N.; Yamada, T.; Matsumura, T.; Ohgawara, T.; Maeda, T.; Perbal, B.; Lyons, K.M.; et al. Cooperative regulation of chondrocyte differentiation by CCN2 and CCN3 shown by a comprehensive analysis of the CCN family proteins in cartilage. J. Bone Miner. Res. 2008, 23, 1751–1764. [Google Scholar] [CrossRef]
- Kim, W.; Angulo, M.C. Unraveling the role of oligodendrocytes and myelin in pain. J. Neurochem. 2025, 169, e16206. [Google Scholar] [CrossRef]
- Weng, C.; Groh, A.M.R.; Yaqubi, M.; Cui, Q.L.; Stratton, J.A.; Moore, G.R.W.; Antel, J.P. Heterogeneity of mature oligodendrocytes in the central nervous system. Neural Regen. Res. 2025, 20, 1336–1349. [Google Scholar] [CrossRef]
- Kistemaker, L.; van Bodegraven, E.J.; de Vries, H.E.; Hol, E.M. Vascularized human brain organoids: Current possibilities and prospects. Trends Biotechnol. 2025. epub ahead of print. [Google Scholar] [CrossRef]
- Romeo, S.G.; Secco, I.; Schneider, E.; Reumiller, C.M.; Santos, C.X.C.; Zoccarato, A.; Musale, V.; Pooni, A.; Yin, X.; Theofilatos, K.; et al. Human blood vessel organoids reveal a critical role for CTGF in maintaining microvascular integrity. Nat. Commun. 2023, 14, 5552. [Google Scholar] [CrossRef]
- Power, G.; Ferreira-Santos, L.; Martinez-Lemus, L.A.; Padilla, J. Integrating molecular and cellular components of endothelial shear stress mechanotransduction. Am. J. Physiol. Heart Circ. Physiol. 2024, 327, H989–H1003. [Google Scholar] [CrossRef] [PubMed]
- Vaeyens, M.M.; Jorge-Peñas, A.; Barrasa-Fano, J.; Steuwe, C.; Heck, T.; Carmeliet, P.; Roeffaers, M.; Van Oosterwyck, H. Matrix deformations around angiogenic sprouts correlate to sprout dynamics and suggest pulling activity. Angiogenesis 2020, 23, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Kretschmer, M.; Rüdiger, D.; Zahler, S. Mechanical Aspects of Angiogenesis. Cancers 2021, 13, 4987. [Google Scholar] [CrossRef] [PubMed]
- Chaqour, B.; Goppelt-Struebe, M. Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J. 2006, 273, 3639–3649. [Google Scholar] [CrossRef]
- Moon, S.; Lee, S.; Caesar, J.A.; Pruchenko, S.; Leask, A.; Knowles, J.A.; Sinon, J.; Chaqour, B. A CTGF-YAP Regulatory Pathway Is Essential for Angiogenesis and Barriergenesis in the Retina. iScience 2020, 23, 101184. [Google Scholar] [CrossRef]
- Chaqour, B.; Grant, M.B.; Lau, L.F.; Wang, B.; Urbanski, M.M.; Melendez-Vasquez, C.V. Atomic Force Microscopy-Based Measurements of Retinal Microvessel Stiffness in Mice with Endothelial-Specific Deletion of CCN1. Methods Mol. Biol. 2023, 2582, 323–334. [Google Scholar] [CrossRef]
- Chaqour, B. CCN-Hippo YAP signaling in vision and its role in neuronal, glial and vascular cell function and behavior. J. Cell Commun. Signal. 2023, 17, 255–262. [Google Scholar] [CrossRef]
- Dey, S.; Fan, C.; Gothelf, K.V.; Li, J.; Lin, C.; Liu, L.; Liu, N.; Nijenhuis, M.A.D.; Sacca, B.; Simmel, F.C.; et al. DNA origami. Nat. Rev. Methods Primers 2021, 1, 13. [Google Scholar] [CrossRef]
- Zhan, P.; Peil, A.; Jiang, Q.; Wang, D.; Mousavi, S.; Xiong, Q.; Shen, Q.; Shang, Y.; Ding, B.; Lin, C.; et al. Recent advances in DNA origami-engineered nanomaterials and applications. Chem. Rev. 2023, 123, 3976–4050. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Chen, Q.; Chang, Y.; Chen, Q.; Fukumoto, K.; Wang, B.; Yu, J.; Luo, C.; Ma, J.; et al. Organ-specific gene expression control using DNA origami-based nanodevices. Nano Lett. 2024, 24, 8410–8417. [Google Scholar] [CrossRef]
- Wei, J.; Sun, Y.; Wang, H.; Zhu, T.; Li, L.; Zhou, Y.; Liu, Q.; Dai, Z.; Li, W.; Yang, T.; et al. Designer cellular spheroids with DNA origami for drug screening. Sci. Adv. 2024, 10, eado9880. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Jaekel, A.; van den Boom, J.; Podlesainski, D.; Elnaggar, M.; Heuer-Jungemann, A.; Kaiser, M.; Meyer, H.; Saccà, B. A modular DNA origami nanocompartment for engineering a cell-free, protein unfolding and degradation pathway. Nat. Nanotechnol. 2024, 19, 1521–1531. [Google Scholar] [CrossRef] [PubMed]
- Klose, A.; Gounani, Z.; Ijäs, H.; Lajunen, T.; Linko, V.; Laaksonen, T. Doxorubicin-loaded DNA origami nanostructures: Stability in vitreous and their uptake and toxicity in ocular cells. Nanoscale 2024, 16, 17585–17598. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Baars, I.; Berzina, I.; Rocamonde-Lago, I.; Shen, B.; Yang, Y.; Lolaico, M.; Waldvogel, J.; Smyrlaki, I.; Zhu, K.; et al. A DNA robotic switch with regulated autonomous display of cytotoxic ligand nanopatterns. Nat. Nanotechnol. 2024, 19, 1366–1374. [Google Scholar] [CrossRef]
- Shen, Q.; Feng, Q.; Wu, C.; Xiong, Q.; Tian, T.; Yuan, S.; Shi, J.; Bedwell, G.J.; Yang, R.; Aiken, C.; et al. Modeling HIV-1 nuclear entry with nucleoporin-gated DNA-origami channels. Nat. Struct. Mol. Biol. 2023, 30, 425–435. [Google Scholar] [CrossRef]
- Zeng, Y.C.; Young, O.J.; Si, L.; Ku, M.W.; Isinelli, G.; Rajwar, A.; Jiang, A.; Wintersinger, C.M.; Graveline, A.R.; Vernet, A.; et al. DNA origami vaccine (DoriVac) nanoparticles improve both humoral and cellular immune responses to infectious diseases. bioRxiv 2024. [Google Scholar] [CrossRef]
- Luo, X.; Dai, W.; Lin, T.; Li, L.; Zhang, Y. Role of deoxyribonucleic acid origami for alleviating kidney and liver injury in diabetic sepsis. J. Proteome Res. 2024, 23, 4626–4636. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, Y.; Chen, Q.; Li, M.; Xu, L.; Lin, B.; Tan, Y.; Liu, Z. DNA nanostructures: Advancing cancer immunotherapy. Small 2024, 20, e2405231. [Google Scholar] [CrossRef]
- Cui, M.; Zhang, D.; Zheng, X.; Zhai, H.; Xie, M.; Fan, Q.; Wang, L.; Fan, C.; Chao, J. Intelligent modular DNA lysosome-targeting chimera nanodevice for precision tumor therapy. J. Am. Chem. Soc. 2024, 146, 29609–29620. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perbal, B.; Weiskirchen, R.; Chaqour, B. Unlocking New Frontiers in Cell Signaling and Communication and Fostering New Collaborative Interactions and Scientific Initiatives: Lessons Learned from the International Cellular Communication Network Society (ICCNS) Workshop. Proceedings 2025, 115, 1. https://doi.org/10.3390/proceedings2025115001
Perbal B, Weiskirchen R, Chaqour B. Unlocking New Frontiers in Cell Signaling and Communication and Fostering New Collaborative Interactions and Scientific Initiatives: Lessons Learned from the International Cellular Communication Network Society (ICCNS) Workshop. Proceedings. 2025; 115(1):1. https://doi.org/10.3390/proceedings2025115001
Chicago/Turabian StylePerbal, Bernard, Ralf Weiskirchen, and Brahim Chaqour. 2025. "Unlocking New Frontiers in Cell Signaling and Communication and Fostering New Collaborative Interactions and Scientific Initiatives: Lessons Learned from the International Cellular Communication Network Society (ICCNS) Workshop" Proceedings 115, no. 1: 1. https://doi.org/10.3390/proceedings2025115001
APA StylePerbal, B., Weiskirchen, R., & Chaqour, B. (2025). Unlocking New Frontiers in Cell Signaling and Communication and Fostering New Collaborative Interactions and Scientific Initiatives: Lessons Learned from the International Cellular Communication Network Society (ICCNS) Workshop. Proceedings, 115(1), 1. https://doi.org/10.3390/proceedings2025115001