Next Article in Journal
In Silico Antimicrobial Potential of Some Flavonoids from Retama sphaerocarpa: Molecular Docking Studies, Pharmacokinetics and Toxicity Prediction
Previous Article in Journal
The Development and Standardization of a U-Bent LSPR Fiber Optic Biosensor to Screen for Parvovirus B19 IgM
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Abstract

Analysis of the Amyloid-like Properties of COL2A1 Protein †

by
Aleksandra Brukkel
1,*,
Andrew A. Zelinsky
2,
Marina V. Ryabinina
2 and
Aleksandr A. Rubel
2
1
SCAMT Institute, ITMO University, 191002 Saint-Petersburg, Russia
2
Laboratory of Amyloid Biology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
*
Author to whom correspondence should be addressed.
Presented at the 3rd International Electronic Conference on Biomolecules, 23–25 April 2024; Available online: https://sciforum.net/event/IECBM2024.
Proceedings 2024, 103(1), 80; https://doi.org/10.3390/proceedings2024103080
Published: 12 April 2024
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biomolecules)
Amyloids are proteins which exist in the form of insoluble aggregates and possess a characteristic cross-beta structure. The formation of amyloid aggregates can be seen during several pathological processes in humans, including neurodegenerative diseases, diabetes, and systemic amyloidoses. Despite their infamous association with the previously mentioned conditions, amyloids can also serve a functional role in biological systems. For example, Pmel17, which is involved in melanin polymerization in mammalian cells, resembles an amyloid structure, and some peptide hormones are also known to be stored in amyloid form in secretory granules of the endocrine system [1]. Thus, studying amyloids as functional proteins may aid in both determining targets for the treatment of pathological conditions and in understanding their unique role in the organism. The analysis of amyloid-like properties requires a comprehensive approach using bioinformatic prediction, which can later be verified using bacterial and yeast systems as well as various biochemical tests. The object of this study is the protein COL2A1, better known as type II collagen. This type of collagen forms the basis of cartilage tissue and its mutant form can cause diseases known as collagenopathies. This protein possesses some distinctive features characteristic of amyloids. These features include Congo red staining and a tendency to form fibrillar structures. In addition, the possibility of it forming amyloid structures was predicted for the third isoform of type II collagen via the ArchCandy program. In this work, we present data on the investigation of COL2A1’s amyloid properties in a C-DAG system [2] and a yeast model [3]. Currently, additional studies are being conducted to obtain the protein in a bacterial system to assess its biochemical properties.

Author Contributions

Conceptualization A.A.R.; data acquisition and formal analysis, A.B., A.A.Z. and M.V.R.; supervision, A.A.R., funding acquisition, A.A.R., writing—review and editing, A.B. and A.A.R. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by St. Petersburg State University (project No. 95444727).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Rubel, M.S.; Fedotov, S.A.; Grizel, A.V.; Sopova, J.V.; Malikova, O.A.; Chernoff, Y.O.; Rubel, A.A. Functional Mammalian Amyloids and Amyloid-like Proteins. Life 2020, 10, 156. [Google Scholar] [CrossRef] [PubMed]
  2. Chandramowlishwaran, P.; Sun, M.; Casey, K.L.; Romanyuk, A.V.; Grizel, A.V.; Sopova, J.V.; Rubel, A.A.; Nussbaum-Krammer, C.; Vorberg, I.M.; Chernoff, Y.O. Mammalian amyloidogenic proteins promote prion nucleation in yeast. J. Biol. Chem. 2018, 293, 3436–3450. [Google Scholar] [CrossRef] [PubMed]
  3. Hochschild, S. A bacterial export system for generating extracellular amyloid aggregates. Nat. Protoc. 2013, 8, 1381–1390. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Brukkel, A.; Zelinsky, A.A.; Ryabinina, M.V.; Rubel, A.A. Analysis of the Amyloid-like Properties of COL2A1 Protein. Proceedings 2024, 103, 80. https://doi.org/10.3390/proceedings2024103080

AMA Style

Brukkel A, Zelinsky AA, Ryabinina MV, Rubel AA. Analysis of the Amyloid-like Properties of COL2A1 Protein. Proceedings. 2024; 103(1):80. https://doi.org/10.3390/proceedings2024103080

Chicago/Turabian Style

Brukkel, Aleksandra, Andrew A. Zelinsky, Marina V. Ryabinina, and Aleksandr A. Rubel. 2024. "Analysis of the Amyloid-like Properties of COL2A1 Protein" Proceedings 103, no. 1: 80. https://doi.org/10.3390/proceedings2024103080

APA Style

Brukkel, A., Zelinsky, A. A., Ryabinina, M. V., & Rubel, A. A. (2024). Analysis of the Amyloid-like Properties of COL2A1 Protein. Proceedings, 103(1), 80. https://doi.org/10.3390/proceedings2024103080

Article Metrics

Back to TopTop