Assessment of the Chemical Hazards in Herbs Consumed in Europe: Toxins, Heavy Metals, and Pesticide Residues †
Abstract
:1. Introduction
2. Materials and Methods
3. Chemical Hazards Associated with Wild Edible Plants
3.1. Pyrrolizidine Alkaloids
3.2. Pesticides: Chlorpyrifos and Ethylene Oxide
4. Strategies for Safeguarding Public Health
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Asselt, E.D.; Banach, J.L.; van der Fels-Klerx, H.J. Prioritization of Chemical Hazards in Spices and Herbs for European Monitoring Programs. Food Control 2018, 83, 7–17. [Google Scholar] [CrossRef]
- Pinela, J.; Carvalho, A.M.; Ferreira, I.C.F.R. Wild Edible Plants: Nutritional and Toxicological Characteristics, Retrieval Strategies and Importance for Today’s Society. Food Chem. Toxicol. 2017, 110, 165–188. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.M.; Barata, A.M. The Consumption of Wild Edible Plants. In Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications; Wiley: Hoboken, NJ, USA, 2016; pp. 159–198. ISBN 9781118944653. [Google Scholar]
- Motti, R. Wild Edible Plants: A Challenge for Future Diet and Health. Plants 2022, 11, 344. [Google Scholar] [CrossRef] [PubMed]
- Ghanimi, R.; Ouhammou, A.; Baazizi, H.; Houguig, K.; Cherkaoui, M. Nutritional Value of Six Wild Edible Plants Traditionally Used as Vegetables in Morocco. Ecol. Environ. Conserv. 2022, 28, 1000–1004. [Google Scholar] [CrossRef]
- Duguma, H.T. Wild Edible Plant Nutritional Contribution and Consumer Perception in Ethiopia. Int. J. Food Sci. 2020, 16, 2958623. [Google Scholar] [CrossRef]
- Fantasma, F.; Samukha, V.; Saviano, G.; Chini, M.G.; Iorizzi, M.; Caprari, C. Nutraceutical Aspects of Selected Wild Edible Plants of the Italian Central Apennines. Nutraceuticals 2024, 4, 190–231. [Google Scholar] [CrossRef]
- Banach, J.L.; Stratakou, I.; van der Fels-Klerx, H.J.; de Besten, H.M.W.; Zwietering, M.H. European Alerting and Monitoring Data as Inputs for the Risk Assessment of Microbiological and Chemical Hazards in Spices and Herbs. Food Control 2016, 69, 237–249. [Google Scholar] [CrossRef]
- Parrilla Vázquez, P.; Ferrer, C.; Martínez Bueno, M.J.; Fernández-Alba, A.R. Pesticide Residues in Spices and Herbs: Sample Preparation Methods and Determination by Chromatographic Techniques. TrAC Trends Anal. Chem. 2019, 115, 13–22. [Google Scholar] [CrossRef]
- Ranfa, A.; Maurizi, A.; Romano, B.; Bodesmo, M. The Importance of Traditional Uses and Nutraceutical Aspects of Some Edible Wild Plants in Human Nutrition: The Case of Umbria (Central Italy). Plant Biosyst. 2014, 148, 297–306. [Google Scholar] [CrossRef]
- Maleš, I.; Pedisić, S.; Zorić, Z.; Elez-Garofulić, I.; Repajić, M.; You, L.; Vladimir-Knežević, S.; Butorac, D.; Dragović-Uzelac, V. The Medicinal and Aromatic Plants as Ingredients in Functional Beverage Production. J. Funct. Foods 2022, 96, 105210. [Google Scholar] [CrossRef]
- Pereira, A.G.; Fraga-Corral, M.; Garciá-Oliveira, P.; Jimenez-Lopez, C.; Lourenço-Lopes, C.; Carpena, M.; Otero, P.; Gullón, P.; Prieto, M.A.; Simal-Gandara, J. Culinary and Nutritional Value of Edible Wild Plants from Northern Spain Rich in Phenolic Compounds with Potential Health Benefits. Food Funct. 2020, 11, 8493–8515. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Ullah, M.I.; Sajjad, A.; Shakeel, Q.; Hussain, A. Environmental and Health Effects of Pesticide Residues. In Sustainable Agriculture Reviews; Springer: Berlin/Heidelberg, Germany, 2021; Volume 48, pp. 311–336. [Google Scholar]
- Botías, C.; David, A.; Hill, E.M.; Goulson, D. Contamination of Wild Plants near Neonicotinoid Seed-Treated Crops, and Implications for Non-Target Insects. Sci. Total Environ. 2016, 566–567, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Rajput, S.; Sharma, R.; Kumari, A.; Kaur, R.; Sharma, G.; Arora, S.; Kaur, R. Pesticide Residues in Various Environmental and Biological Matrices: Distribution, Extraction, and Analytical Procedures. Environ. Dev. Sustain. 2022, 24, 6032–6052. [Google Scholar] [CrossRef]
- Kowalska, A.; Manning, L. Using the Rapid Alert System for Food and Feed: Potential Benefits and Problems on Data Interpretation. Crit. Rev. Food Sci. Nutr. 2021, 61, 906–919. [Google Scholar] [CrossRef]
- Wenio, I.; Bartosiewicz, I.; Derewiaka, D.; Dewiszek, K.; Karniłowicz, K. A Fast Method for Determination of Ethylene Oxide Using Gas Chromatography Coupled with Mass Spectrometry GC-MS/MS. Appl. Sci. 2023, 13, 7480. [Google Scholar] [CrossRef]
- Bononi, M.; Quaglia, G.; Tateo, F. Identification of Ethylene Oxide in Herbs, Spices and Other Dried Vegetables Imported into Italy. Food Addit. Contam.—Part A 2014, 31, 271–275. [Google Scholar] [CrossRef]
- Casado, N.; Morante-Zarcero, S.; Sierra, I. The Concerning Food Safety Issue of Pyrrolizidine Alkaloids: An Overview. Trends Food Sci. Technol. 2022, 120, 123–139. [Google Scholar] [CrossRef]
- Kristanc, L.; Kreft, S. European Medicinal and Edible Plants Associated with Subacute and Chronic Toxicity Part II: Plants with Hepato-, Neuro-, Nephro- and Immunotoxic Effects. Food Chem. Toxicol. 2016, 92, 38–49. [Google Scholar] [CrossRef]
- Mulder, P.P.J.; Sánchez, P.L.; These, A.; Preiss-Weigert, A.; Castellari, M. Occurrence of Pyrrolizidine Alkaloids in Food. EFSA Support. Publ. 2017, 12, 859E. [Google Scholar] [CrossRef]
- Ahmad, L.; He, Y.; Hao, J.C.; Semotiuk, A.; Liu, Q.R.; Mazari, P. Toxic Pyrrolizidine Alkaloids Provide a Warning Sign to Overuse of the Ethnomedicine Arnebia Benthamii. J. Ethnopharmacol. 2018, 210, 88–94. [Google Scholar] [CrossRef]
- Kruse, L.H.; Stegemann, T.; Sievert, C.; Ober, D. Identification of a Second Site of Pyrrolizidine Alkaloid Biosynthesis in Comfrey to Boost Plant Defense in Floral Stage. Plant Physiol. 2017, 174, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Tábuas, B.; Cruz Barros, S.; Diogo, C.; Cavaleiro, C.; Sanches Silva, A. Pyrrolizidine Alkaloids in Foods, Herbal Drugs, and Food Supplements: Chemistry, Metabolism, Toxicological Significance, Analytical Methods, Occurrence, and Challenges for Future. Toxins 2024, 16, 79. [Google Scholar] [CrossRef] [PubMed]
- Dusemund, B.; Nowak, N.; Sommerfeld, C.; Lindtner, O.; Schäfer, B.; Lampen, A. Risk Assessment of Pyrrolizidine Alkaloids in Food of Plant and Animal Origin. Food Chem. Toxicol. 2018, 115, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Fuente-Ballesteros, A.; Brabenec, O.; Tsagkaris, A.S.; Ares, A.M.; Hajslova, J.; Bernal, J. Comprehensive Overview of the Analytical Methods for Determining Pyrrolizidine Alkaloids and Their Derived Oxides in Foods. J. Food Compos. Anal. 2024, 125, 105758. [Google Scholar] [CrossRef]
- Bharathi, P.; Reddy, A.G.; Reddy, A.R.; Alpharaj, M. A Study of Certain Herbs Against Chlorpyrifos-Induced Changes in Lipid and Protein Profile in Poultry. Toxicol. Int. 2011, 18, 44–46. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; Shaltout, A.A.; Mahmoud, M.H.H.; Emam, H.E. Efficient Elimination of Chlorpyrifos via Tailored Macroporous Membrane Based on Al-MOF. Sustain. Mater. Technol. 2021, 29, e00326. [Google Scholar] [CrossRef]
- Mojsak, P.; Łozowicka, B.; Kaczyński, P. Estimating Acute and Chronic Exposure of Children and Adults to Chlorpyrifos in Fruit and Vegetables Based on the New, Lower Toxicology Data. Ecotoxicol. Environ. Saf. 2018, 159, 182–189. [Google Scholar] [CrossRef]
- European Union. Corrigendum to Commission Regulation (EU) 2020/1085 of 23 July 2020 Amending Annexes II and V to Regulation (EC) No 396/2005 of the European Parliament and of the Council as Regards Maximum Residue Levels for Chlorpyrifos and Chlorpyrifos-Methyl in or On. In Official Journal of the European Union; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Chen, L.; Wei, X.; Chaves, B.D.; Jones, D.; Ponder, M.A.; Subbiah, J. Inactivation of Salmonella Enterica and Enterococcus Faecium NRRL B2354 on Cumin Seeds Using Gaseous Ethylene Oxide. Food Microbiol. 2021, 94, 103656. [Google Scholar] [CrossRef]
- RASFF Window—Results. Available online: https://webgate.ec.europa.eu/rasff-window/screen/search. (accessed on 23 May 2024).
- Ehzari, H.; Safari, M.; Samimi, M.; Shamsipur, M.; Bagher Gholivand, M. A Highly Sensitive Electrochemical Biosensor for Chlorpyrifos Pesticide Detection Using the Adsorbent Nanomatrix Contain the Human Serum Albumin and the Pd:CdTe Quantum Dots. Microchem. J. 2022, 179, 107424. [Google Scholar] [CrossRef]
- Mello, D.C.; Pires, N.L.; Evangelista, C.S.; Caldas, E.D. Pesticide Residues in Dry Herbs Used for Tea Preparation by UHPLC-MS/MS: Method Validation and Analysis. J. Food Compos. Anal. 2024, 125, 105817. [Google Scholar] [CrossRef]
- Chen, Y.; Li, L.; Xu, J.; Liu, Y.; Xie, Y.; Xiong, A.; Wang, Z.; Yang, L. Mass Spectrometric Analysis Strategies for Pyrrolizidine Alkaloids. Food Chem. 2024, 445, 138748. [Google Scholar] [CrossRef] [PubMed]
- Kaczyński, P.; Łozowicka, B. A Novel Approach for Fast and Simple Determination Pyrrolizidine Alkaloids in Herbs by Ultrasound-Assisted Dispersive Solid Phase Extraction Method Coupled to Liquid Chromatography–Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2020, 187, 113351. [Google Scholar] [CrossRef] [PubMed]
- Izcara, S.; Casado, N.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Sierra, I. Miniaturized and Modified QuEChERS Method with Mesostructured Silica as Clean-up Sorbent for Pyrrolizidine Alkaloids Determination in Aromatic Herbs. Food Chem. 2022, 380, 132189. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Ruan, J.Q.; Li, N.; Fu, P.P.; Ye, Y.; Lin, G. A Novel Ultra-Performance Liquid Chromatography Hyphenated with Quadrupole Time of Flight Mass Spectrometry Method for Rapid Estimation of Total Toxic Retronecine-Type of Pyrrolizidine Alkaloids in Herbs without Requiring Corresponding Standards. Food Chem. 2016, 194, 1320–1328. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carpena, M.; Barciela, P.; Perez-Vazquez, A.; Noras, K.; Trafiałek, J.; Prieto, M.A.; Trząskowska, M. Assessment of the Chemical Hazards in Herbs Consumed in Europe: Toxins, Heavy Metals, and Pesticide Residues. Proceedings 2024, 102, 2054. https://doi.org/10.3390/proceedings2024102054
Carpena M, Barciela P, Perez-Vazquez A, Noras K, Trafiałek J, Prieto MA, Trząskowska M. Assessment of the Chemical Hazards in Herbs Consumed in Europe: Toxins, Heavy Metals, and Pesticide Residues. Proceedings. 2024; 102(1):2054. https://doi.org/10.3390/proceedings2024102054
Chicago/Turabian StyleCarpena, Maria, Paula Barciela, Ana Perez-Vazquez, Kinga Noras, Joanna Trafiałek, Miguel A. Prieto, and Monika Trząskowska. 2024. "Assessment of the Chemical Hazards in Herbs Consumed in Europe: Toxins, Heavy Metals, and Pesticide Residues" Proceedings 102, no. 1: 2054. https://doi.org/10.3390/proceedings2024102054
APA StyleCarpena, M., Barciela, P., Perez-Vazquez, A., Noras, K., Trafiałek, J., Prieto, M. A., & Trząskowska, M. (2024). Assessment of the Chemical Hazards in Herbs Consumed in Europe: Toxins, Heavy Metals, and Pesticide Residues. Proceedings, 102(1), 2054. https://doi.org/10.3390/proceedings2024102054