In Situ Biosensing of Cancer-Related Cellular Biomolecules †
References
- Ding, L; Cheng, W.; Wang, X.; Ding, S.; Ju, H. Carbohydrate monolayer strategy for electrochemical assay of cell surface carbohydrate. J. Am. Chem. Soc. 2008, 130, 7224. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Ding, L.; Ding, S.; Yin, Y.; Ju, H. A simple electrochemical cytosensor array for dynamic analysis of carcinoma cell surface glycans. Angew. Chem. Int. Ed. 2009, 48, 6465. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Qian, R.; Xue, Y.; Cheng, W.; Ju, H. In situ scanometric assay of cell surface carbohydrate by glyconanoparticle-aggregation-regulated silver enhancement. Anal. Chem. 2010, 82, 5804. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Xiao, X. R.; Chen, Y. L.; Qian, R. C.; Bao, L.; Ju, H. X. Competition-based transfer of carbohydrate expression information from a cell-adhered surface to a secondary surface. Chem. Commun. 2011, 47, 3742. [Google Scholar] [CrossRef]
- Han, E.; Ding, L.; Qian, R.; Bao, L.; Ju, H. Sensitive chemiluminescent imaging for chemoselective analysis of glycan expression on living cells using a multifunctional nanoprobe. Anal. Chem. 2012, 84, 1452. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, L.; Liu, T.; Ju, H.X. Arrayed profiling of multiple glycans on whole living cell surfaces. Anal. Chem. 2013, 85, 11153. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, L.; Xu, J.; Song, W.; Yang, M.; Hu, J.; Ju, H. Micro-competition system for Raman quantification of multiple glycans on intact cell surface. Chem. Sci. 2015, 6, 3769. [Google Scholar] [CrossRef]
- Song, W.; Ding, L.; Chen, Y.; Ju, H. Plasmonic coupling of dual gold nanoprobes for SERS imaging of sialic acids on living cells. Chem. Commun. 2016, 52, 10640. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, L.; Song, W.; Yang, M.; Ju, H. Protein-specific Raman imaging of glycosylation on single cells with zone-controllable SERS effect. Chem. Sci. 2016, 7, 569. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, L.; Song, W.; Yang, M.; Ju, H. Liberation of protein-specific glycosylation information for glycan analysis by exonuclease III-aided recycling hybridization. Anal. Chem. 2016, 88, 2923. [Google Scholar] [CrossRef]
- Wu, N.; Bao, L.; Ding, L.; Ju, H. A single excitation-duplexed imaging strategy for profiling cell surface protein-specific glycoforms. Angew. Chem. Int. Ed. 2016, 55, 5220. [Google Scholar] [CrossRef]
- Dong, H.; Ding, L.; Yan, F.; Ji, H.; Ju, H. The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials 2011, 32, 387. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Lei, J.; Ju, H.; Zhi, F.; Wang, H.; Guo, W.; Zhu, Z.; Yan, F. Target-cell-specific delivery, imaging, and detection of intracellular microRNA with a multifunctional SnO2 nanoprobe. Angew. Chem. Int. Ed. 2012, 51, 4607. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Lei, J.; Ding, L.; Wen, Y.; Ju, H.; Zhang, X. MicroRNA: Function, detection, and bioanalysis. Chem. Rev. 2013, 113, 6207. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Wang, Q.; Ju, H. Simultaneous sensing of intracellular microRNAs with a multi-functionalized carbon nitride nanosheet probe. Chem. Commun. 2014, 50, 13604. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Ju, H. In situ quantitation of intracellular microRNA in the whole cell cycle with a functionalized carbon nanosphere probe, Chem. Commun. 2015, 51, 2141. [Google Scholar]
- Bao, L.; Ding, L.; Yang, M.; Ju, H. Noninvasive imaging of sialyltransferase activity in living cells by chemoselective recognition, Sci. Rep. 2015, 5, 10947. [Google Scholar]
- Bao, L.; Ding, L.; Hui, J.; Ju, H. A light-up imaging protocol for neutral pH-enhanced fluorescence detection of lysosomal neuraminidase activity in living cells. Chem. Commun. 2016, 52, 12897. [Google Scholar] [CrossRef]
- Qian, R.; Ding, L.; Ju, H. Switchable fluorescent imaging of intracellular telomerase activity using telomerase-responsive mesoporous silica nanoparticle. J. Am. Chem. Soc. 2013, 135, 13282. [Google Scholar] [CrossRef] [PubMed]
- Qian, R.; Ding, L.; Yan, L.; Lin, M.; Ju, H. Smart vesicle kit for in situ monitoring of intracellular telomerase activity using a telomerase-responsive probe. Anal. Chem. 2014, 86, 8642. [Google Scholar] [CrossRef]
- Qian, R.; Ding, L.; Yan, L.; Lin, M.; Ju, H. A robust probe for lighting up intracellular telomerase via primer extension to open a nicked molecular beacon. J. Am. Chem. Soc. 2014, 136, 8205. [Google Scholar] [CrossRef] [PubMed]
- Ling, P.; Lei, J.; Jia, L.; Ju, H. Platinum nanoparticles encapsulated metal−organic frameworks for the electrochemical detection of telomerase activity. Chem. Commun. 2016, 52, 1226. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Hui, J.; Liu, Y.; Guo, Y.; Liu, L.; Ding, L.; Ju, H. A cascade amplification approach for visualization of telomerase activity in living cells. Biosens. Bioelectron. 2016, 86, 1017. [Google Scholar] [CrossRef] [PubMed]
- Ling, P.; Lei, J.; Ju, H. Nanoscaled porphyrinic metal−organic frameworks for electrochemical detection of telomerase activity via telomerase triggered conformation switch. Anal. Chem. 2016, 88, 10680. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Ding, L.; Tian, J.; Bao, L.; Hu, Y.; Ju, H.; Yu, J. S. Aptamer loaded MoS2 nanoplates as nanoprobes for detection of intracellular ATP and controllable photodynamic therapy. Nanoscale 2015, 7, 15953. [Google Scholar] [CrossRef]
- Zhang, L.; Lei, J.; Liu, J.; Ma, F.; Ju, H. In situ activation and monitoring of the evolution of the intracellular caspase family. Chem. Sci. 2015, 6, 3365. [Google Scholar] [CrossRef]
- Tian, J.; Ding, L.; Xu, H. J.; Shen, Z.; Ju, H.; Jia, L.; Bao, L.; Yu, J. Cell-specific and pH-activatable rubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer. J. Am. Chem. Soc. 2013, 135, 18850. [Google Scholar] [CrossRef]
- Tian, J.; Ding, L.; Ju, H.; Yang, Y.; Li, X.; Shen, Z.; Zhu, Z.; Yu, J.; Yang, C.J. A multifunctional nanomicelle for real-time targeted imaging and precise near-infrared cancer therapy. Angew. Chem. Int. Ed. 2014, 53, 9544. [Google Scholar] [CrossRef]
- Tian, J.; Zhou, J.; Shen, Z.; Ding, L.; Yu, J. S.; Ju, H. A pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics. Chem. Sci. 2015, 6, 5969. [Google Scholar] [CrossRef]
- Tian, J.; Ding, L.; Wang, Q.; Hu, Y.; Jia, L.; Yu, J. S.; Ju, H. Folate receptor-targeted and cathepsin B-activatable nanoprobe for in situ therapeutic monitoring of photosensitive cell death. Anal. Chem. 2015, 87, 3841. [Google Scholar] [CrossRef]
- Zhang, L.; Lei, J.; Ma, F.; Ling, P.; Liu, J.; Ju, H. A porphyrin photosensitized metal-organic framework for cancer cell apoptosis and caspase responsive theranostics. Chem. Commun. 2015, 51, 10831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lei, J.; Liu, J.; Ma, F.; Ju, H. Persistent luminescence nanoprobe for biosensing and lifetime imaging of cell apoptosis via time-resolved fluorescence resonance energy transfer. Biomaterials 2015, 67, 323. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, L.; Lei, J.; Ju, H. MicroRNA-responsive cancer cell imaging and therapy with functionalized gold nanoprobe. ACS Appl. Mater. Interf. 2015, 7, 19016. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Luo, Y.; Huang, L.; Feng, Y.; Ju, H.; Yu, B. Y. Pegylated folate and peptide-decorated graphene oxide nanovehicle for in vivo targeted delivery of anticancer drugs and therapeutic self-monitoring. Biosens. Bioelectron. 2016, 80, 519. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Lei, J.; Shen, H.; Ju, H. Multifunctional metal−organic framework nanoprobe for cathepsin B-activated cancer cell imaging and chemo-photodynamic therapy. ACS Applied Mater. Interf. 2017, 9, 2130. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Liu, Y.; Wu, J.; Zhang, Y.; Zhu, J.; Yang, M.; Ju, H. A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery. Nat. Commun. 2016, 7, 13580. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, H. In Situ Biosensing of Cancer-Related Cellular Biomolecules. Proceedings 2017, 1, 783. https://doi.org/10.3390/proceedings1080783
Ju H. In Situ Biosensing of Cancer-Related Cellular Biomolecules. Proceedings. 2017; 1(8):783. https://doi.org/10.3390/proceedings1080783
Chicago/Turabian StyleJu, Huangxian. 2017. "In Situ Biosensing of Cancer-Related Cellular Biomolecules" Proceedings 1, no. 8: 783. https://doi.org/10.3390/proceedings1080783
APA StyleJu, H. (2017). In Situ Biosensing of Cancer-Related Cellular Biomolecules. Proceedings, 1(8), 783. https://doi.org/10.3390/proceedings1080783