Next Article in Journal
Disposable Sensors for Monitoring Chronic Wounds
Previous Article in Journal
Development of an Automated System for the Analysis of Cell-Free Fetal DNA from Maternal Plasma for Non-Invasive Pre-Natal Diagnostics
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Abstract

In Situ Biosensing of Cancer-Related Cellular Biomolecules †

State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, China
Presented at the 5th International Symposium on Sensor Science (I3S 2017), Barcelona, Spain, 27–29 September 2017.
Proceedings 2017, 1(8), 783; https://doi.org/10.3390/proceedings1080783
Published: 4 December 2017
Cancer-related cellular biomolecules have been regarded as attractive targets for biomedical research, molecular diagnostics and cancer therapy. Our recent efforts have been devoted to in situ analysis and highly selective detection of various cancer-related cellular biomolecules and precise near-infrared cancer therapy. Some research results in in situ biosensing of cancer-related cellular biomolecules with different detection techniques, including electrochemical, chemiluminescent, scanometric, fluorescent, Raman and mass spectroscopic imaging have been published. These cellular biomolecules include glycans [1,2,3,4,5,6,7,8] and protein-specific glycans [9,10,11] on living cell surfaces, intracellular microRNA [12,13,14,15,16], sialyltransferase and lysosomal neuraminidase [17,18], telomerase [19,20,21,22,23,24], ATP and caspases [25,26]. Some nanoprobes designed for real-time targeted imaging and precise near-infrared therapy against cancer are also discussed [27,28,29,30,31,32,33,34,35,36].

References

  1. Ding, L; Cheng, W.; Wang, X.; Ding, S.; Ju, H. Carbohydrate monolayer strategy for electrochemical assay of cell surface carbohydrate. J. Am. Chem. Soc. 2008, 130, 7224. [Google Scholar] [CrossRef] [PubMed]
  2. Cheng, W.; Ding, L.; Ding, S.; Yin, Y.; Ju, H. A simple electrochemical cytosensor array for dynamic analysis of carcinoma cell surface glycans. Angew. Chem. Int. Ed. 2009, 48, 6465. [Google Scholar] [CrossRef] [PubMed]
  3. Ding, L.; Qian, R.; Xue, Y.; Cheng, W.; Ju, H. In situ scanometric assay of cell surface carbohydrate by glyconanoparticle-aggregation-regulated silver enhancement. Anal. Chem. 2010, 82, 5804. [Google Scholar] [CrossRef] [PubMed]
  4. Ding, L.; Xiao, X. R.; Chen, Y. L.; Qian, R. C.; Bao, L.; Ju, H. X. Competition-based transfer of carbohydrate expression information from a cell-adhered surface to a secondary surface. Chem. Commun. 2011, 47, 3742. [Google Scholar] [CrossRef]
  5. Han, E.; Ding, L.; Qian, R.; Bao, L.; Ju, H. Sensitive chemiluminescent imaging for chemoselective analysis of glycan expression on living cells using a multifunctional nanoprobe. Anal. Chem. 2012, 84, 1452. [Google Scholar] [CrossRef]
  6. Chen, Y.; Ding, L.; Liu, T.; Ju, H.X. Arrayed profiling of multiple glycans on whole living cell surfaces. Anal. Chem. 2013, 85, 11153. [Google Scholar] [CrossRef]
  7. Chen, Y.; Ding, L.; Xu, J.; Song, W.; Yang, M.; Hu, J.; Ju, H. Micro-competition system for Raman quantification of multiple glycans on intact cell surface. Chem. Sci. 2015, 6, 3769. [Google Scholar] [CrossRef]
  8. Song, W.; Ding, L.; Chen, Y.; Ju, H. Plasmonic coupling of dual gold nanoprobes for SERS imaging of sialic acids on living cells. Chem. Commun. 2016, 52, 10640. [Google Scholar] [CrossRef]
  9. Chen, Y.; Ding, L.; Song, W.; Yang, M.; Ju, H. Protein-specific Raman imaging of glycosylation on single cells with zone-controllable SERS effect. Chem. Sci. 2016, 7, 569. [Google Scholar] [CrossRef]
  10. Chen, Y.; Ding, L.; Song, W.; Yang, M.; Ju, H. Liberation of protein-specific glycosylation information for glycan analysis by exonuclease III-aided recycling hybridization. Anal. Chem. 2016, 88, 2923. [Google Scholar] [CrossRef]
  11. Wu, N.; Bao, L.; Ding, L.; Ju, H. A single excitation-duplexed imaging strategy for profiling cell surface protein-specific glycoforms. Angew. Chem. Int. Ed. 2016, 55, 5220. [Google Scholar] [CrossRef]
  12. Dong, H.; Ding, L.; Yan, F.; Ji, H.; Ju, H. The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials 2011, 32, 387. [Google Scholar] [CrossRef] [PubMed]
  13. Dong, H.; Lei, J.; Ju, H.; Zhi, F.; Wang, H.; Guo, W.; Zhu, Z.; Yan, F. Target-cell-specific delivery, imaging, and detection of intracellular microRNA with a multifunctional SnO2 nanoprobe. Angew. Chem. Int. Ed. 2012, 51, 4607. [Google Scholar] [CrossRef] [PubMed]
  14. Dong, H.; Lei, J.; Ding, L.; Wen, Y.; Ju, H.; Zhang, X. MicroRNA: Function, detection, and bioanalysis. Chem. Rev. 2013, 113, 6207. [Google Scholar] [CrossRef] [PubMed]
  15. Liao, X.; Wang, Q.; Ju, H. Simultaneous sensing of intracellular microRNAs with a multi-functionalized carbon nitride nanosheet probe. Chem. Commun. 2014, 50, 13604. [Google Scholar] [CrossRef] [PubMed]
  16. Liao, X.; Ju, H. In situ quantitation of intracellular microRNA in the whole cell cycle with a functionalized carbon nanosphere probe, Chem. Commun. 2015, 51, 2141. [Google Scholar]
  17. Bao, L.; Ding, L.; Yang, M.; Ju, H. Noninvasive imaging of sialyltransferase activity in living cells by chemoselective recognition, Sci. Rep. 2015, 5, 10947. [Google Scholar]
  18. Bao, L.; Ding, L.; Hui, J.; Ju, H. A light-up imaging protocol for neutral pH-enhanced fluorescence detection of lysosomal neuraminidase activity in living cells. Chem. Commun. 2016, 52, 12897. [Google Scholar] [CrossRef]
  19. Qian, R.; Ding, L.; Ju, H. Switchable fluorescent imaging of intracellular telomerase activity using telomerase-responsive mesoporous silica nanoparticle. J. Am. Chem. Soc. 2013, 135, 13282. [Google Scholar] [CrossRef] [PubMed]
  20. Qian, R.; Ding, L.; Yan, L.; Lin, M.; Ju, H. Smart vesicle kit for in situ monitoring of intracellular telomerase activity using a telomerase-responsive probe. Anal. Chem. 2014, 86, 8642. [Google Scholar] [CrossRef]
  21. Qian, R.; Ding, L.; Yan, L.; Lin, M.; Ju, H. A robust probe for lighting up intracellular telomerase via primer extension to open a nicked molecular beacon. J. Am. Chem. Soc. 2014, 136, 8205. [Google Scholar] [CrossRef] [PubMed]
  22. Ling, P.; Lei, J.; Jia, L.; Ju, H. Platinum nanoparticles encapsulated metal−organic frameworks for the electrochemical detection of telomerase activity. Chem. Commun. 2016, 52, 1226. [Google Scholar] [CrossRef] [PubMed]
  23. Yan, L.; Hui, J.; Liu, Y.; Guo, Y.; Liu, L.; Ding, L.; Ju, H. A cascade amplification approach for visualization of telomerase activity in living cells. Biosens. Bioelectron. 2016, 86, 1017. [Google Scholar] [CrossRef] [PubMed]
  24. Ling, P.; Lei, J.; Ju, H. Nanoscaled porphyrinic metal−organic frameworks for electrochemical detection of telomerase activity via telomerase triggered conformation switch. Anal. Chem. 2016, 88, 10680. [Google Scholar] [CrossRef] [PubMed]
  25. Jia, L.; Ding, L.; Tian, J.; Bao, L.; Hu, Y.; Ju, H.; Yu, J. S. Aptamer loaded MoS2 nanoplates as nanoprobes for detection of intracellular ATP and controllable photodynamic therapy. Nanoscale 2015, 7, 15953. [Google Scholar] [CrossRef]
  26. Zhang, L.; Lei, J.; Liu, J.; Ma, F.; Ju, H. In situ activation and monitoring of the evolution of the intracellular caspase family. Chem. Sci. 2015, 6, 3365. [Google Scholar] [CrossRef]
  27. Tian, J.; Ding, L.; Xu, H. J.; Shen, Z.; Ju, H.; Jia, L.; Bao, L.; Yu, J. Cell-specific and pH-activatable rubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer. J. Am. Chem. Soc. 2013, 135, 18850. [Google Scholar] [CrossRef]
  28. Tian, J.; Ding, L.; Ju, H.; Yang, Y.; Li, X.; Shen, Z.; Zhu, Z.; Yu, J.; Yang, C.J. A multifunctional nanomicelle for real-time targeted imaging and precise near-infrared cancer therapy. Angew. Chem. Int. Ed. 2014, 53, 9544. [Google Scholar] [CrossRef]
  29. Tian, J.; Zhou, J.; Shen, Z.; Ding, L.; Yu, J. S.; Ju, H. A pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics. Chem. Sci. 2015, 6, 5969. [Google Scholar] [CrossRef]
  30. Tian, J.; Ding, L.; Wang, Q.; Hu, Y.; Jia, L.; Yu, J. S.; Ju, H. Folate receptor-targeted and cathepsin B-activatable nanoprobe for in situ therapeutic monitoring of photosensitive cell death. Anal. Chem. 2015, 87, 3841. [Google Scholar] [CrossRef]
  31. Zhang, L.; Lei, J.; Ma, F.; Ling, P.; Liu, J.; Ju, H. A porphyrin photosensitized metal-organic framework for cancer cell apoptosis and caspase responsive theranostics. Chem. Commun. 2015, 51, 10831. [Google Scholar] [CrossRef] [PubMed]
  32. Zhang, L.; Lei, J.; Liu, J.; Ma, F.; Ju, H. Persistent luminescence nanoprobe for biosensing and lifetime imaging of cell apoptosis via time-resolved fluorescence resonance energy transfer. Biomaterials 2015, 67, 323. [Google Scholar] [CrossRef] [PubMed]
  33. Liu, J.; Zhang, L.; Lei, J.; Ju, H. MicroRNA-responsive cancer cell imaging and therapy with functionalized gold nanoprobe. ACS Appl. Mater. Interf. 2015, 7, 19016. [Google Scholar] [CrossRef] [PubMed]
  34. Tian, J.; Luo, Y.; Huang, L.; Feng, Y.; Ju, H.; Yu, B. Y. Pegylated folate and peptide-decorated graphene oxide nanovehicle for in vivo targeted delivery of anticancer drugs and therapeutic self-monitoring. Biosens. Bioelectron. 2016, 80, 519. [Google Scholar] [CrossRef]
  35. Liu, J.; Zhang, L.; Lei, J.; Shen, H.; Ju, H. Multifunctional metal−organic framework nanoprobe for cathepsin B-activated cancer cell imaging and chemo-photodynamic therapy. ACS Applied Mater. Interf. 2017, 9, 2130. [Google Scholar] [CrossRef] [PubMed]
  36. Ren, K.; Liu, Y.; Wu, J.; Zhang, Y.; Zhu, J.; Yang, M.; Ju, H. A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery. Nat. Commun. 2016, 7, 13580. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Ju, H. In Situ Biosensing of Cancer-Related Cellular Biomolecules. Proceedings 2017, 1, 783. https://doi.org/10.3390/proceedings1080783

AMA Style

Ju H. In Situ Biosensing of Cancer-Related Cellular Biomolecules. Proceedings. 2017; 1(8):783. https://doi.org/10.3390/proceedings1080783

Chicago/Turabian Style

Ju, Huangxian. 2017. "In Situ Biosensing of Cancer-Related Cellular Biomolecules" Proceedings 1, no. 8: 783. https://doi.org/10.3390/proceedings1080783

Article Metrics

Back to TopTop