Restraining the Diffusion of Photocarriers to Improve the Spatial Resolution of the Chemical Imaging Sensor †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Acknowledgments
Conflicts of Interest
References
- Nakao, M.; Yoshinobu, T.; Iwasaki, H. Scanning-laser-beam semiconductor pH-imaging sensor. Sens. Actuators B 1994, 20, 119–123. [Google Scholar] [CrossRef]
- Hafeman, D.G.; Parce, J.W.; McConnell, H.M. Light-addressable potentiometric sensor for biochemical systems. Science 1988, 240, 1182–1185. [Google Scholar] [CrossRef] [PubMed]
- Nakao, M.; Yoshinobu, T.; Iwasaki, H. Improvement of spatial resolution of a laser-scanning pH-imaging sensor. Jpn. J. Appl. Phys. Part 2-Lett. 1994, 33, L394–L397. [Google Scholar] [CrossRef]
- Krause, S.; Moritz, W.; Talabani, H.; Xu, M.; Sabot, A.; Ensell, G. Scanning photo-induced impedance microscopy—Resolution studies and polymer characterization. Electrochim. Acta 2006, 51, 1423–1430. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, Y.L.; Jiang, S.H.; Kunze, J.; Schmuki, P.; Krause, S. High resolution LAPS and SPIM. Electrochem. Commun. 2010, 12, 758–760. [Google Scholar] [CrossRef]
- Moritz, W.; Yoshinobu, T.; Finger, F.; Krause, S.; Martin-Fernandez, M.; Schöning, M.J. High resolution LAPS using amorphous silicon as the semiconductor material. Sens. Actuators B 2004, 103, 436–441. [Google Scholar] [CrossRef]
- Moritz, W.; Gerhardt, I.; Roden, D.; Xu, M.; Krause, S. Photocurrent measurements for laterally resolved interface characterization. Fresenius J. Anal. Chem. 2000, 367, 329–333. [Google Scholar] [CrossRef]
- Miyamoto, K.; Seki, K.; Guo, Y.; Wagner, T.; Schöning, M.J.; Yoshinobu, T. Enhancement of the spatial resolution of the chemical imaging sensor by a hybrid fiber-optic illumination. Procedia Eng. 2014, 87, 612–615. [Google Scholar] [CrossRef]
- Miyamoto, K.; Itabashi, A.; Wagner, T.; Schöning, M.J.; Yoshinobu, T. High-speed chemical imaging inside a microfluidic channel. Sens. Actuators B Chem. 2014, 194, 521–527. [Google Scholar] [CrossRef]
- Miyamoto, K.; Yu, B.; Isoda, H.; Wagner, T.; Schöning, M.J.; Yoshinobu, T. Visualization of the recovery process of defects in a cultured cell layer by chemical imaging sensor. Sens. Actuators B Chem. 2016, 236, 965–969. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyamoto, K.-i.; Suto, T.; Werner, C.F.; Wagner, T.; Schöning, M.J.; Yoshinobu, T. Restraining the Diffusion of Photocarriers to Improve the Spatial Resolution of the Chemical Imaging Sensor. Proceedings 2017, 1, 477. https://doi.org/10.3390/proceedings1040477
Miyamoto K-i, Suto T, Werner CF, Wagner T, Schöning MJ, Yoshinobu T. Restraining the Diffusion of Photocarriers to Improve the Spatial Resolution of the Chemical Imaging Sensor. Proceedings. 2017; 1(4):477. https://doi.org/10.3390/proceedings1040477
Chicago/Turabian StyleMiyamoto, Ko-ichiro, Takeyuki Suto, Carl Frederik Werner, Torsten Wagner, Michael J. Schöning, and Tatsuo Yoshinobu. 2017. "Restraining the Diffusion of Photocarriers to Improve the Spatial Resolution of the Chemical Imaging Sensor" Proceedings 1, no. 4: 477. https://doi.org/10.3390/proceedings1040477
APA StyleMiyamoto, K. -i., Suto, T., Werner, C. F., Wagner, T., Schöning, M. J., & Yoshinobu, T. (2017). Restraining the Diffusion of Photocarriers to Improve the Spatial Resolution of the Chemical Imaging Sensor. Proceedings, 1(4), 477. https://doi.org/10.3390/proceedings1040477