Biological Nitrification Inhibition in Urochloa Genotypes and Implications for Biomass Production and Nitrogen Uptake
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Management of Experimental Units
2.3. BNI Capacity
2.4. Biomass Yield Estimation
2.5. Determination of Total N in Biomass
2.6. Nitrogen Uptake (NU)
2.7. Statistical Analysis
3. Results
3.1. Biological Nitrification Inhibition (BNI) Capacity
3.2. Biomass Yield, Total Nitrogen Content, and Nitrogen Uptake
4. Discussion
4.1. Biological Nitrification Inhibition Capacity (BNI)
4.2. Total N in Biomass and N Uptake (NU)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BNI | Biological nitrification inhibition |
| DAP | Diammonium phosphate |
| NU | Nitrogen uptake |
| LSD | Least significant difference |
References
- Subbarao, G.V.; Yoshihashi, T.; Worthington, M.; Nakahara, K.; Ando, Y.; Sahrawat, K.L.; Rao, I.M.; Lata, J.C.; Kishii, M.; Braun, H.J. Suppression of Soil Nitrification by Plants. Plant Sci. 2015, 233, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, G.; Ito, O.; Sahrawat, K.; Berry, W.; Nakahara, K.; Ishikawa, T.; Watanabe, T.; Suenaga, K.; Rondon, M.; Rao, I. Scope and Strategies for Regulation of Nitrification in Agricultural Systems—Challenges and Opportunities. CRC Crit. Rev. Plant Sci. 2006, 25, 303–335. [Google Scholar] [CrossRef]
- Bozal-Leorri, A.; Subbarao, G.V.; Kishii, M.; Urmeneta, L.; Kommerell, V.; Karwat, H.; Braun, H.J.; Aparicio-Tejo, P.M.; Ortiz-Monasterio, I.; González-Murua, C.; et al. Biological Nitrification Inhibitor-Trait Enhances Nitrogen Uptake by Suppressing Nitrifier Activity and Improves Ammonium Assimilation in Two Elite Wheat Varieties. Front. Plant Sci. 2022, 13, 1034219. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Sahrawat, K.L.; Nakahara, K.; Ishikawa, T.; Kishii, M.; Rao, I.M.; Hash, C.T.; George, T.S.; Srinivasa Rao, P.; Nardi, P.; et al. Biological Nitrification Inhibition—A Novel Strategy to Regulate Nitrification in Agricultural Systems. Adv. Agron. 2012, 114, 249–302. [Google Scholar] [CrossRef]
- Sarr, P.S.; Ando, Y.; Nakamura, S.; Deshpande, S.; Subbarao, G.V. Sorgoleone Release from Sorghum Roots Shapes the Composition of Nitrifying Populations, Total Bacteria, and Archaea and Determines the Level of Nitrification. Biol. Fertil. Soils 2019, 56, 145–166. [Google Scholar] [CrossRef]
- Bozal-Leorri, A.; Arregui, L.M.; Torralbo, F.; González-Moro, M.B.; González-Murua, C.; Aparicio-Tejo, P. Soil Moisture Modulates Biological Nitrification Inhibitors Release in Sorghum Plants. Plant Soil 2023, 487, 197–212. [Google Scholar] [CrossRef]
- Cui, L.; Li, D.; Wu, Z.; Xue, Y.; Xiao, F.; Zhang, L.; Song, Y.; Li, Y.; Zheng, Y.; Zhang, J.; et al. Effects of Nitrification Inhibitors on Soil Nitrification and Ammonia Volatilization in Three Soils with Different pH. Agronomy 2021, 11, 1674. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Arango, J.; Masahiro, K.; Hooper, A.M.; Yoshihashi, T.; Ando, Y.; Nakahara, K.; Deshpande, S.; Ortiz-Monasterio, I.; Ishitani, M.; et al. Genetic Mitigation Strategies to Tackle Agricultural GHG Emissions: The Case for Biological Nitrification Inhibition Technology. Plant Sci. 2017, 262, 165–168. [Google Scholar] [CrossRef]
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. Nitrogen Transformations in Modern Agriculture and the Role of Biological Nitrification Inhibition. Nat. Plants 2017, 3, 17074. [Google Scholar] [CrossRef]
- Tian, H.; Xu, R.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G.; et al. A Comprehensive Quantification of Global Nitrous Oxide Sources and Sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Lata, J.C.; Gubry-Rangin, C.; Nannipieri, P.; Schlesinger, W.H. Foreword. Biol. Fertil. Soils 2022, 58, 193–194. [Google Scholar] [CrossRef]
- Wang, X.; Bai, J.; Xie, T.; Wang, W.; Zhang, G.; Yin, S.; Wang, D. Effects of Biological Nitrification Inhibitors on Nitrogen Use Efficiency and Greenhouse Gas Emissions in Agricultural Soils: A Review. Ecotoxicol. Environ. Saf. 2021, 220, 112338. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Sahrawat, K.L.; Nakahara, K.; Rao, I.M.; Ishitani, M.; Hash, C.T.; Kishii, M.; Bonnett, D.G.; Berry, W.L.; Lata, J.C. A Paradigm Shift towards Low-Nitrifying Production Systems: The Role of Biological Nitrification Inhibition (BNI). Ann. Bot. 2013, 112, 297–316. [Google Scholar] [CrossRef]
- Bastidas, M.; Vázquez, E.; Villegas, D.M.; Rao, I.M.; Gutierrez, J.F.; Vivas-Quila, N.J.; Amado, M.; Berdugo, C.; Arango, J. Optimizing Nitrogen Use Efficiency of Six Forage Grasses to Reduce Nitrogen Loss from Intensification of Tropical Pastures. Agric. Ecosyst. Environ. 2024, 367, 108970. [Google Scholar] [CrossRef]
- Villegas, D.M.; Arévalo, A.; Sotelo, M.; Nuñez, J.; Moreta, D.; Rao, I.; Ishitani, M.; Subbarao, G.V.; Arango, J. Phenotyping of Urochloa Humidicola Grass Hybrids for Agronomic and Environmental Performance in the Piedmont Region of the Orinoquian Savannas of Colombia. Grass Forage Sci. 2023, 78, 119–128. [Google Scholar] [CrossRef]
- Otaka, J.; Subbarao, G.V.; Ono, H.; Yoshihashi, T. Biological Nitrification Inhibition in Maize—Isolation and Identification of Hydrophobic Inhibitors from Root Exudates. Biol. Fertil. Soils 2021, 58, 251–264. [Google Scholar] [CrossRef]
- Qin, F.; Su, H.; Sun, L.; Li, Y. Research Progress Related to Sorghum Biological Nitrification Inhibitors. Agronomy 2024, 14, 1576. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Rondon, M.; Ito, O.; Ishikawa, T.; Rao, I.M.; Nakahara, K.; Lascano, C.; Berry, W.L. Biological Nitrification Inhibition (BNI)—Is It a Widespread Phenomenon? Plant Soil 2006, 294, 5–18. [Google Scholar] [CrossRef]
- Stanley, P.L.; Rowntree, J.E.; Beede, D.K.; DeLonge, M.S.; Hamm, M.W. Impacts of Soil Carbon Sequestration on Life Cycle Greenhouse Gas Emissions in Midwestern USA Beef Finishing Systems. Agric. Syst. 2018, 162, 249–258. [Google Scholar] [CrossRef]
- Masters, L.E.; Tomaszewska, P.; Schwarzacher, T.; Hackel, J.; Zuntini, A.R.; Heslop-Harrison, P.; Vorontsova, M.S. Phylogenomic Analysis Reveals Five Independently Evolved African Forage Grass Clades in the Genus Urochloa. Ann. Bot. 2024, 133, 725–742. [Google Scholar] [CrossRef]
- Leite, M.L.d.M.V.; de Lucena, L.R.R.; Bezerra, R.C.A.; de Almeida, M.C.R.; Simões, V.J.L.P. Urochloa Grass Growth as a Function of Nitrogen and Phosphorus Fertilization. Braz. J. Biom. 2021, 39, 492–504. [Google Scholar] [CrossRef]
- Coêlho, J.J.; da Cunha, M.V.; dos Santos, M.V.F.; Dubeux, J.C.B.; de Mello, A.C.L. Exotic Forage Grasses in the Brazilian Semi-Arid Region: Forage Mass, Competitiveness, and Botanical Similarities of Non-Native Pastures. J. Arid. Environ. 2021, 193, 104551. [Google Scholar] [CrossRef]
- Martins, C.T.V.D.; do Nascimento, T.L.; Bueno, L.G.; Antonio, R.P.; Borges, R.M.E.; de Melo, N.F. Urochloa Mosambicensis in the Brazilian Semi-Arid Region: Morpho-Agronomic Characterization of Accessions under Restricted Climatic Conditions. Genet. Resour. Crop Evol. 2023, 71, 2673–2686. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Kishii, M.; Bozal-Leorri, A.; Ortiz-Monasterio, I.; Gao, X.; Ibba, M.I.; Karwat, H.; Gonzalez-Moro, M.B.; Gonzalez-Murua, C.; Yoshihashi, T.; et al. Enlisting Wild Grass Genes to Combat Nitrification in Wheat Farming: A Nature-Based Solution. Proc. Natl. Acad. Sci. USA 2021, 118, e2106595118. [Google Scholar] [CrossRef]
- Zhou, Y.; Lambrides, C.J.; Li, J.; Xu, Q.; Toh, R.; Tian, S.; Yang, P.; Yang, H.; Ryder, M.; Denton, M.D. Nitrifying Microbes in the Rhizosphere of Perennial Grasses Are Modified by Biological Nitrification Inhibition. Microorganisms 2020, 8, 1687. [Google Scholar] [CrossRef]
- Greenfield, H.; Southgate, D.A.T. Food Composition Data; Springer: New York, NY, USA, 1992. [Google Scholar] [CrossRef]
- Balzarini, M.; Gonzalez, L.; Tablada, M.; Casanoves, F.; Di Rienzo, J.; Robledo, C. Manual del Usuario; Editorial Brujas: Córdoba, Argentina, 2008; pp. 1–336. [Google Scholar]
- Subbarao, G.V.; Nakahara, K.; Ishikawa, T.; Yoshihashi, T.; Ito, O.; Ono, H.; Ohnishi-Kameyama, M.; Yoshida, M.; Kawano, N.; Berry, W.L. Free Fatty Acids from the Pasture Grass Brachiaria Humidicola and One of Their Methyl Esters as Inhibitors of Nitrification. Plant Soil 2008, 313, 89–99. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Watanabe, T.; Pearse, S.J.; Ito, O.; Hossain, Z.A.K.M.; Subbarao, G.V. Biological Nitrification Inhibition by Brachiaria Humidicola Roots Varies with Soil Type and Inhibits Nitrifying Bacteria, but Not Other Major Soil Microorganisms. Soil Sci. Plant Nutr. 2009, 55, 725–733. [Google Scholar] [CrossRef]
- Nuñez, J.; Arevalo, A.; Karwat, H.; Egenolf, K.; Miles, J.; Chirinda, N.; Cadisch, G.; Rasche, F.; Rao, I.; Subbarao, G.; et al. Biological Nitrification Inhibition Activity in a Soil-Grown Biparental Population of the Forage Grass, Brachiaria Humidicola. Plant Soil 2018, 426, 401–411. [Google Scholar] [CrossRef]
- Zeng, H.; Di, T.; Zhu, Y.; Subbarao, G.V. Transcriptional Response of Plasma Membrane H+-ATPase Genes to Ammonium Nutrition and Its Functional Link to the Release of Biological Nitrification Inhibitors from Sorghum Roots. Plant Soil 2015, 398, 301–312. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Nakahara, K.; Hurtado, M.P.; Ono, H.; Moreta, D.E.; Salcedo, A.F.; Yoshihashi, A.T.; Ishikawa, T.; Ishitani, M.; Ohnishi-Kameyama, M.; et al. Evidence for Biological Nitrification Inhibition in Brachiaria Pastures. Proc. Natl. Acad. Sci. USA 2009, 106, 17302–17307. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zeng, H.; Shen, Q.; Ishikawa, T.; Subbarao, G.V. Interplay among NH4+ Uptake, Rhizosphere pH and Plasma Membrane H+-ATPase Determine the Release of BNIs in Sorghum Roots—Possible Mechanisms and Underlying Hypothesis. Plant Soil 2012, 358, 131–141. [Google Scholar] [CrossRef]
- Ni, G.; Leung, P.M.; Daebeler, A.; Guo, J.; Hu, S.; Cook, P.; Nicol, G.W.; Daims, H.; Greening, C. Nitrification in Acidic and Alkaline Environments. Essays Biochem. 2023, 67, 753–768. [Google Scholar] [CrossRef] [PubMed]
- Karwat, H.; Egenolf, K.; Nuñez, J.; Rao, I.; Rasche, F.; Arango, J.; Moreta, D.; Arevalo, A.; Cadisch, G. Low 15N Natural Abundance in Shoot Tissue of Brachiaria Humidicola Is an Indicator of Reduced N Losses Due to Biological Nitrification Inhibition (BNI). Front. Microbiol. 2018, 9, 386748. [Google Scholar] [CrossRef]
- Saunders, W.M.H. The Effect of Different Phosphate Fertilisers on Soil pH and the Consequent Effect on Phosphate Retention. N. Z. J. Agric. Res. 1958, 1, 675–682. [Google Scholar] [CrossRef]
- Ouyang, Y.; Norton, J.M. Nitrite Oxidizer Activity and Community Are More Responsive Than Their Abundance to Ammonium-Based Fertilizer in an Agricultural Soil. Front. Microbiol. 2020, 11, 556387. [Google Scholar] [CrossRef]
- Villegas, D.; Arevalo, A.; Nuñez, J.; Mazabel, J.; Subbarao, G.; Rao, I.; De Vega, J.; Arango, J. Biological Nitrification Inhibition (BNI): Phenotyping of a Core Germplasm Collection of the Tropical Forage Grass Megathyrsus Maximus Under Greenhouse Conditions. Front. Plant Sci. 2020, 11, 549938. [Google Scholar] [CrossRef] [PubMed]
- Carvajal-Tapia, J.I.; Morales-Velasco, S.; Villegas, D.M.; Arango, J.; Vivas-Quila, N.J. Biological Nitrification Inhibition and Forage Productivity of Megathyrsus Maximus in Colombian Dry Tropics. Plant Soil Environ. 2021, 67, 270–277. [Google Scholar] [CrossRef]
- Salsac, L.; Chaillou, S.S.; Morot-Gaudry, J.F.; Lesaint, C.; Jolivet, E. Nitrate and Ammonium Nutrition in Plants. Plant Physiol. Biochem. 1987, 25, 805–812. [Google Scholar] [CrossRef]
| Treatments | NH4+ (mg kg−1 Soil) | NO3− (mg kg−1 Soil) | Available N (mg kg−1 Soil) | Nitrification (%) | Ability % BNI |
|---|---|---|---|---|---|
| Mulatto II | 8.91 d | 20.71 b | 29.62 c | 69.35 b | 78.20 b |
| Cayman | 25.05 a | 11.96 c | 37.00 b | 32.40 d | 87.41 a |
| Talisman | 12.53 c | 17.31 b | 29.85 c | 57.95 c | 81.78 b |
| Camello | 14.47 c | 16.50 b | 30.97 c | 53.42 c | 82.63 a |
| Marandú | 19.44 b | 12.14 c | 31.58 c | 38.58 d | 87.22 a |
| Control | 8.91 d | 95.01 a | 103.92 a | 91.43 a | |
| SEM | 1.19 | 1.36 | 0.99 | 3.10 | 1.35 |
| p-value | 0.0005 | 0.0003 | 0.0001 | 0.0001 | 0.009 |
| Treatments | Yield (kg MS ha−1) | Nitrogen Content (%) | Nitrogen Uptake (kg MS ha−1) |
|---|---|---|---|
| Cayman | 3093.55 a | 1.52 b | 47.32 a |
| Marandú | 2911.75 a | 1.51 b | 42.83 b |
| Mulato II | 2763.06 b | 1.51 b | 37.23 c |
| Camello | 2600.46 b | 1.63 a | 42.77 b |
| Talismán | 2533.55 c | 1.64 a | 41.53 b |
| SEM | 70.16 | 0.02 | 0.78 |
| p-value | 0.005 | 0.027 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rodríguez-Tuz, J.F.; Solorio-Sánchez, F.J.; Ramírez-Avilés, L.; Ku-Vera, J.C.; Aguilar-Pérez, C.F.; Tzec-Gamboa, M.; Casanova-Lugo, F. Biological Nitrification Inhibition in Urochloa Genotypes and Implications for Biomass Production and Nitrogen Uptake. Nitrogen 2026, 7, 3. https://doi.org/10.3390/nitrogen7010003
Rodríguez-Tuz JF, Solorio-Sánchez FJ, Ramírez-Avilés L, Ku-Vera JC, Aguilar-Pérez CF, Tzec-Gamboa M, Casanova-Lugo F. Biological Nitrification Inhibition in Urochloa Genotypes and Implications for Biomass Production and Nitrogen Uptake. Nitrogen. 2026; 7(1):3. https://doi.org/10.3390/nitrogen7010003
Chicago/Turabian StyleRodríguez-Tuz, José Fidel, Francisco J. Solorio-Sánchez, Luis Ramírez-Avilés, Juan Carlos Ku-Vera, Carlos Fernando Aguilar-Pérez, Magnolia Tzec-Gamboa, and Fernando Casanova-Lugo. 2026. "Biological Nitrification Inhibition in Urochloa Genotypes and Implications for Biomass Production and Nitrogen Uptake" Nitrogen 7, no. 1: 3. https://doi.org/10.3390/nitrogen7010003
APA StyleRodríguez-Tuz, J. F., Solorio-Sánchez, F. J., Ramírez-Avilés, L., Ku-Vera, J. C., Aguilar-Pérez, C. F., Tzec-Gamboa, M., & Casanova-Lugo, F. (2026). Biological Nitrification Inhibition in Urochloa Genotypes and Implications for Biomass Production and Nitrogen Uptake. Nitrogen, 7(1), 3. https://doi.org/10.3390/nitrogen7010003

