Role of Fungi in N2O Emissions from Nitrogen-Fertilized Lawn Soil
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Potential N2O Emissions
2.3. Quantifying the Inhibitor-Sensitive Fraction of N2O Emissions
2.4. Soil Physicochemical Analyses
2.5. Microbial Community Analysis
2.6. Statistical Analyses
3. Results
3.1. Effects of N Fertilization on Inorganic N Concentrations
3.2. Effects of Nitrogen Fertilization on N2O Emissions
3.3. Inhibitor-Sensitive Fraction of N2O Emissions
3.4. Fungal Community Composition and Structure
3.5. Correlations Between N2O Emissions, Fungal Communities, and Soil Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Kanter, D.; McDermid, S.; Nazarenko, L. Nitrous Oxide’s Ozone Destructiveness under Different Climate Scenarios. Proc. Int. Nitrogen Initiat. Conf. 2016, 2016, 4–8. [Google Scholar]
- Wang, H.; Yan, Z.; Ju, X.; Song, X.; Zhang, J.; Li, S.; Zhu-Barker, X. Quantifying Nitrous Oxide Production Rates from Nitrification and Denitrification under Various Moisture Conditions in Agricultural Soils: Laboratory Study and Literature Synthesis. Front. Microbiol. 2023, 13, 1110151. [Google Scholar] [CrossRef]
- Cui, X.; Bo, Y.; Adalibieke, W.; Winiwarter, W.; Zhang, X.; Davidson, E.; Sun, Z.; Tian, H.; Smith, P.; Zhou, F. The Global Potential for Mitigating Nitrous Oxide Emissions from Croplands. One Earth 2024, 7, 401–420. [Google Scholar] [CrossRef]
- Roothans, N.; Gabriëls, M.; Abeel, T.; Pabst, M.; van Loosdrecht, M.C.M.; Laureni, M. Aerobic Denitrification as an N2O Source from Microbial Communities. ISME J. 2024, 18, wrae116. [Google Scholar] [CrossRef]
- Christensen, S.; Rousk, K. Global N2O Emissions from Our Planet: Which Fluxes Are Affected by Man, and Can We Reduce These? iScience 2024, 27, 109042. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Ding, W.; Liu, D.; He, T.; Yoo, G.; Yuan, J.; Chen, Z.; Fan, J. Wheat Straw-Derived Biochar Amendment Stimulated N2O Emissions from Rice Paddy Soils by Regulating the amoA Genes of Ammonia-Oxidizing Bacteria. Soil Biol. Biochem. 2017, 113, 89–98. [Google Scholar]
- Ozlu, E.; Kumar, S. Response of Surface GHG Fluxes to Long-Term Manure and Inorganic Fertilizer Application in Corn–Soybean Rotation. Sci. Total Environ. 2018, 626, 817–825. [Google Scholar] [CrossRef]
- Gu, X.; Wang, Y.; Laanbroek, H.J.; Xu, X.; Song, B.; Huo, Y.; Chen, S.; Li, L.; Zhang, L. Saturated N2O Emission Rates Occur above the Nitrogen Deposition Level Predicted for the Semi-Arid Grasslands of Inner Mongolia, China. Geoderma 2019, 341, 18–25. [Google Scholar] [CrossRef]
- Weston, N.B.; Troy, C.; Kearns, P.J.; Bowen, J.L.; Porubsky, W.; Hyacinthe, C.; Meile, C.; Van Cappellen, P.; Joye, S.B. Physicochemical Perturbation Increases Nitrous Oxide Production from Denitrification in Soils and Sediments. Biogeosciences 2024, 21, 4837–4851. [Google Scholar] [CrossRef]
- Dhaliwal, J.K.; Panday, D.; Robertson, G.; Saha, D. Machine Learning Reveals Dynamic Controls of Soil Nitrous Oxide Emissions from Diverse Long-term Cropping Systems. J. Environ. Qual. 2025, 54, 132–146. [Google Scholar] [CrossRef]
- Qian, X.; Chen, H.; Li, Q.; Wang, F. Converse Responses of Biochar Application on N2O Emissions in Soils at Different pH Values in a Subtropical Citrus Orchard. Agronomy 2024, 14, 1831. [Google Scholar] [CrossRef]
- Xu, C.; Han, X.; Ru, S.; Cardenas, L.M.; Rees, R.M.; Wu, D.; Wu, W.; Meng, F. Crop Straw Incorporation Interacts with N Fertilizer on N2O Emissions in an Intensively Cropped Farmland. Geoderma 2019, 341, 18–25. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, T.; Li, J.; Bai, X.; Liu, X.; Ao, J.; Chang, R. Temporal-Scale-Dependent Mechanisms of Forest Soil Nitrous Oxide Emissions under Nitrogen Addition. Commun. Earth Environ. 2024, 5, 512. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, X.; Ju, X. Linkage between N2O Emission and Functional Gene Abundance in an Intensively Managed Calcareous Fluvo-Aquic Soil. Sci. Rep. 2017, 7, 43283. [Google Scholar] [CrossRef]
- Müller, C.; Laughlin, R.J.; Spott, O.; Tobias-Rütting, T. Quantification of N2O Emission Pathways via a 15N Tracing Model. Soil Biol. Biochem. 2014, 72, 44–54. [Google Scholar] [CrossRef]
- Abada, A.; Beiralas, R.; Narvaez, D.; Sperfeld, M.; Duchin-Rapp, Y.; Lipsman, V.; Yuda, L.; Cohen, B.; Carmieli, R.; Ben-Dor, S.; et al. Aerobic Bacteria Produce Nitric Oxide Via Denitrification and Promote Algal Population Collapse. ISME J. 2023, 17, 1167–1183. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, R.; Stevens, R. Evidence for fungal dominance of denitrification and co-denitrification in a grassland soil. Soil Sci. Soc. Am. J. 2002, 66, 1540–1548. [Google Scholar] [CrossRef]
- Marusenko, Y.; Huber, D.; Hall, S. Fungi mediate nitrous oxide production but not ammonia oxidation in aridland soils of the southwestern US. Soil Biol. Biochem. 2013, 63, 24–36. [Google Scholar] [CrossRef]
- Zhong, L.; Wang, S.; Xu, X.; Wang, F.; Rui, Y.; Zhou, X.; Shen, Q.; Wang, J.; Jiang, L.; Luo, C.; et al. Fungi Regulate Response of N2O Production to Warming and Grazing in a Tibetan Grassland. Biogeosciences 2018, 15, 1–27. [Google Scholar] [CrossRef]
- Yang, L.; Li, S.; Shangguan, H.; Qiao, Z.; Huang, X.; Zhou, S.; Li, H.; Su, X.; Sun, X.; Zhu, Y.; et al. Diversity and Activity of Soil N2O-Reducing Bacteria Shaped by Urbanization Gradients. Environ. Sci. Technol. 2024, 58, 15771–15782. [Google Scholar] [CrossRef]
- Chen, H.; Xia, Q.; Yang, T.; Bowman, D.; Shi, W. The Soil Microbial Community of Turf: Linear and Nonlinear Changes of Taxa and N-Cycling Gene Abundances over a Century-Long Turf Development. FEMS Microbiol. Ecol. 2018, 95, fiy224. [Google Scholar] [CrossRef]
- Wang, W.; Haver, D.; Pataki, D. Nitrogen budgets of urban lawns under three different management regimes in southern California. Biogeochemistry 2013, 121, 127–148. [Google Scholar] [CrossRef]
- van Delden, L.; Rowlings, D.; Scheer, C.; Grace, P. Urbanisation-related land use change from forest and pasture into turf grass modifies soil nitrogen cycling and increases N2O emissions. Biogeosciences 2016, 13, 6095–6107. [Google Scholar] [CrossRef]
- Ignatieva, M. Lawns in Cities: From a Globalised Urban Green Space to Sustainable Nature-Based Solutions. Land 2020, 9, 73. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global Forecasts of Urban Expansion to 2030 and Direct Impacts on Biodiversity and Carbon Pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef]
- Trémeau, A.; Palviainen, M.; Fritze, H.; Pumpanen, J.; Heinonsalo, J. Lawns and Meadows in Urban Green Space: Greenhouse Gas Fluxes Linked to Plant Functional Types and Soil Properties. Biogeosciences 2024, 21, 949–967. [Google Scholar] [CrossRef]
- Xun, Z.; Xu, T.; Ren, B.; Zhao, X.; Quan, Z.; Bai, L.; Fang, Y. Nitrogen fertilization of lawns enhanced soil nitrous oxide emissions by increasing autotrophic nitrification. Front. Env. Sci. 2022, 10, 943920. [Google Scholar] [CrossRef]
- Parkin, T.; Venterea, R.; Hargreaves, S. Calculating the detection limits of chamber-based soil greenhouse gas flux measurements. J. Environ. Qual. 2012, 41, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Collier, S.; Ruark, M.; Oates, L.; Jokela, W.; Dell, C. Measurement of greenhouse gas flux from agricultural soils using static chambers. Jove-J. Vis. Exp. 2014, 90, 52110. [Google Scholar]
- Venterea, R.; Petersen, S.; de Klein, C.; Pedersen, A.; Noble, A.; Rees, R.; Gamble, J.; Parkin, T. Global Research Alliance N2O chamber methodology guidelines: Flux calculations. J. Environ. Qual. 2020, 49, 1141–1155. [Google Scholar] [CrossRef] [PubMed]
- Weisblum, B.; Davies, J. Antibiotic inhibitors of the bacterial ribosome. Bacteriol. Rev. 1968, 32, 493–528. [Google Scholar] [CrossRef]
- Castaldi, S.; Smith, K. Effect of cycloheximide on N2O and NO3− production in a forest and an agricultural soil. Biol. Fertil. Soils 1998, 27, 27–34. [Google Scholar] [CrossRef]
- Chen, H.; Mothapo, N.; Shi, W. Fungal and bacterial N2O production regulated by soil amendments of simple and complex substrates. Soil Biol. Biochem. 2015, 84, 116–126. [Google Scholar] [CrossRef]
- Wrage, N.; Velthof, G.; Oenema, O.; Laanbroek, H. Acetylene and oxygen as inhibitors of nitrous oxide production in Nitrosomonas europaea and Nitrosospira briensis: A cautionary tale. FEMS Microbiol. Ecol. 2004, 47, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Han, X. N2O emission from the semi-arid ecosystem under mineral fertilizer (urea and superphosphate) and increased precipitation in northern China. Atmos. Environ. 2008, 42, 291–302. [Google Scholar] [CrossRef]
- Xue, D.; Gao, Y.; Yao, H.; Huang, C. Nitrification potentials of Chinese tea orchard soils and their adjacent wasteland and forest soils. J. Environ. Sci. 2009, 21, 1225–1229. [Google Scholar] [CrossRef]
- Duan, P.; Zhang, X.; Zhang, Q.; Wu, Z.; Xiong, Z. Field-aged biochar stimulated N2O production from greenhouse vegetable production soils by nitrification and denitrification. Sci. Total Environ. 2018, 642, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Braun, R.; Bremer, D. Nitrous Oxide Emissions in Turfgrass Systems: A Review. Agron. J. 2018, 110, 2222–2232. [Google Scholar] [CrossRef]
- Zhong, L.; Bowatte, S.; Newton, P.; Hoogendoorn, C.; Luo, D. An increased ratio of fungi to bacteria indicates greater potential for N2O production in a grazed grassland exposed to elevated CO2. Agric. Ecosyst. Environ. 2018, 254, 111–116. [Google Scholar] [CrossRef]
- Rex, D.; Clough, T.; Richards, K.; Klein, C.; Morales, S.; Samad, M.; Grant, J.; Lanigan, G. Fungal and bacterial contributions to co-denitrification emissions of N2O and N2 following urea deposition to soil. Nutr. Cycl. Agroecosys. 2018, 110, 135–149. [Google Scholar] [CrossRef]
- Huang, Y.; Long, X.; Chapman, S.; Yao, H. Acidophilic denitrifiers dominate the N2O production in a 100-year-old tea orchard soil. Environ. Sci. Pollut. Res. 2015, 22, 4173–4182. [Google Scholar] [CrossRef]
- Chen, H.; Mothapo, N.; Shi, W. The significant contribution of fungi to soil N2O production across diverse ecosystems. Appl. Soil Ecol. 2014, 73, 70–77. [Google Scholar] [CrossRef]
- Ma, L.; Shan, J.; Yan, X. Nitrite behavior accounts for the nitrous oxide peaks following fertilization in a fluvo-aquic soil. Biol. Fertil. Soils 2015, 51, 563–572. [Google Scholar] [CrossRef]
- Mothapo, N.; Chen, H.; Cubeta, M.; Grossman, J.; Fuller, F.; Shi, W. Phylogenetic, taxonomic and functional diversity of fungal denitrifiers and associated N2O production efficacy. Soil Biol. Biochem. 2015, 83, 160–175. [Google Scholar] [CrossRef]
- Shoun, H.; Fushinobu, S.; Jiang, L.; Kim, S.; Wakagi, T. Fungal denitrification and nitric oxide reductase cytochrome P450nor. Philos. Trans. R. Soc. B. 2012, 367, 1186–1194. [Google Scholar] [CrossRef]
- Prendergast-Miller, M.; Baggs, E.; Johnson, D. Nitrous oxide production by the ectomycorrhizal fungi Paxillus involutus and Tylospora fibrillosa. FEMS Microbiol. Lett. 2011, 316, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Yuan, Z.; Chen, N.; Zhu, X.; Huang, S.; Lu, C.; Liu, K.; Zhou, F.; Smith, P.; Tian, H.; et al. Legacy effects cause systematic underestimation of N2O emission factors. Nat. Commun. 2025, 16, 2775. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Yu, G.; Fang, H.; Cao, G.; Li, Y. Short-term effect of increasing nitrogen deposition on CO2, CH4 and N2O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. Atmos. Environ. 2010, 44, 2920–2926. [Google Scholar] [CrossRef]
Treatment | Soil Organic C (g·kg−1) | Total N (g·kg−1) | C/N Ratio | NH4+ Content (mg·N·kg−1) | NO3− Content (mg·N·kg−1) | pH |
---|---|---|---|---|---|---|
N0 | 7.33 ± 0.51 | 0.93 ± 0.10 | 7.95 ± 0.35 | 6.19 ± 0.25 | 25.99 ± 2.14 b | 7.10 ± 0.02 a |
N100 | 7.42 ± 0.95 | 0.90 ± 0.06 | 8.21 ± 0.48 | 6.75 ± 0.16 | 36.46 ± 1.70 ab | 7.01 ± 0.01 a |
N200 | 7.44 ± 0.22 | 0.89 ± 0.05 | 8.41 ± 0.24 | 7.55 ± 0.08 | 38.22 ± 0.67 a | 6.83 ± 0.02 b |
N300 | 7.11 ± 0.30 | 0.93 ± 0.05 | 7.66 ± 0.25 | 6.51 ± 0.08 | 41.65 ± 4.78 a | 6.73 ± 0.05 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xun, Z.; Zhao, M.; Zhao, X.; Wang, M.; Liu, Y.; Han, X.; Zhang, Y.; Wu, Y.; Quan, Z. Role of Fungi in N2O Emissions from Nitrogen-Fertilized Lawn Soil. Nitrogen 2025, 6, 90. https://doi.org/10.3390/nitrogen6040090
Xun Z, Zhao M, Zhao X, Wang M, Liu Y, Han X, Zhang Y, Wu Y, Quan Z. Role of Fungi in N2O Emissions from Nitrogen-Fertilized Lawn Soil. Nitrogen. 2025; 6(4):90. https://doi.org/10.3390/nitrogen6040090
Chicago/Turabian StyleXun, Zhifeng, Mingzhu Zhao, Xueya Zhao, Mi Wang, Yujing Liu, Xueying Han, Yiming Zhang, Yanhua Wu, and Zhi Quan. 2025. "Role of Fungi in N2O Emissions from Nitrogen-Fertilized Lawn Soil" Nitrogen 6, no. 4: 90. https://doi.org/10.3390/nitrogen6040090
APA StyleXun, Z., Zhao, M., Zhao, X., Wang, M., Liu, Y., Han, X., Zhang, Y., Wu, Y., & Quan, Z. (2025). Role of Fungi in N2O Emissions from Nitrogen-Fertilized Lawn Soil. Nitrogen, 6(4), 90. https://doi.org/10.3390/nitrogen6040090