Effects of Biochar and Dicyandiamide on Root Traits, Yield, and Soil N2O Emissions of Greenhouse Tomato Under a Biogas Slurry Hole Irrigation System
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Materials
2.3. Experimental Design
2.4. Sample Collection and Measurement
2.4.1. Tomato Root Traits
2.4.2. Tomato Yield Measurement
2.4.3. Soil N2O Collection and Measurement
2.5. Analytic Hierarchy Process Comprehensive Evaluation
- (1)
- Construction of a hierarchical model: The complex problem was divided into three levels—goal, criteria, and alternatives.
- (2)
- Creation of a judgment matrix: Pairwise comparisons of the importance between elements at each level formed the judgment matrix for subsequent weight calculations. The comparison values used a scale from 1 to 9 and their reciprocals, indicating the relative importance of each element.
- (3)
- Single-level sorting and consistency test: The consistency index (CI) was first calculated using CI = λmax − n/(n − 1), where λmax is the maximum eigenvalue and n is the order of the judgment matrix. The consistency ratio (CR) was then calculated using CR = CI/RI, where RI is the average random consistency index corresponding to matrix order n. A CR < 0.10 indicated acceptable consistency.
2.6. Data Analysis
3. Results and Analysis
3.1. Effects of Different Treatments on Tomato Root Traits
3.2. Effects of Different Treatments on Tomato Yield, Irrigation Water Use Efficiency (IWUE), and Partial Factor Productivity of Nitrogen (PFPN)
3.3. Effects of Different Treatments on Soil N2O Emission Flux from Greenhouse Tomato
3.4. Key Root Traits Affecting Yield and Soil N2O Emissions in Greenhouse Tomato
3.5. Multi-Indicator Comprehensive Evaluation of Greenhouse Tomato Based on AHP
4. Discussion
4.1. Effects of Different Treatments on Tomato Root Traits, Yield, and Water–Nutrient Use Efficiency
4.2. Effects of Different Treatments on Soil N2O Emissions from Greenhouse Tomato
4.3. Research Limitations and Tiered Practical Guidance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, N.; Singhvi, R. Effects of chemical fertilizers and pesticides on human health and environment: A review. Int. J. Agric. Environ. Biotechnol. 2017, 10, 675–680. [Google Scholar] [CrossRef]
- Guo, Y.X.; Chen, Y.F.; Searchinger, T.D.; Zhou, M.; Pan, D.; Yang, J.N.; Wu, L.; Cui, Z.L.; Zhang, W.F.; Zhang, F.S.; et al. Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. Nat. Food 2020, 1, 648–658. [Google Scholar] [CrossRef] [PubMed]
- Sa, Q.L.; Zheng, J.; Zhang, K.; Wang, Y. Effects and assessment of the combined application of biogas slurry and chemical fertilizers on greenhouse tomato growth, yield, and soil quality. Sci. Hortic. 2025, 344, 114113. [Google Scholar] [CrossRef]
- Rahaman, M.A.; Zhang, Q.W.; Shi, Y.L.; Zhan, X.Y.; Li, G.C. Biogas slurry application could potentially reduce N2O emissions and increase crop yield. Sci. Total Environ. 2021, 778, 146269. [Google Scholar] [CrossRef]
- Bera, T.; Purakayastha, T.J.; Patra, A.K.; Datta, S.C. Comparative analysis of physicochemical, nutrient, and spectral properties of agricultural residue biochars as influenced by pyrolysis temperatures. J. Mater. Cycles Waste Manag. 2018, 20, 1115–1127. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Xu, X.; Bi, Z.C.; Li, L.; Li, B.; Xiong, Z.Q. Soil concentration profiles and diffusion and emission of nitrous oxide influenced by the application of biochar in a rice-wheat annual rotation system. Environ. Sci. Pollut. Res. 2016, 23, 7949–7961. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Sánchez-Monedero, M.A.; Roig, A.; Hanley, K.; Enders, A.; Lehmann, J. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions? Sci. Rep. 2013, 3, 1732. [Google Scholar] [CrossRef]
- Liu, X.R.; Shi, Y.L.; Zhang, Q.W.; Li, G.C. Effects of biochar on nitrification and denitrification-mediated N2O emissions and the associated microbial community in an agricultural soil. Environ. Sci. Pollut. Res. 2021, 28, 6649–6663. [Google Scholar] [CrossRef]
- Ding, S.; Li, C.B.; Ding, X.Y.; Li, G.T.; Ban, G.J.; Xia, Z.W.; Zhao, X.R.; Lin, Q.M.; Wang, X. An exploration of manure derived N in soils using 15N after the application of biochar, straw and a mix of both. Sci. Total Environ. 2022, 804, 150239. [Google Scholar] [CrossRef]
- Zheng, J.; Li, Z.F.; Sa, Q.L.; Wang, Y. Effects of biochar, biogas slurry, and dicyandiamide application on N2O emissions from soil in tomato production under protected cultivation. Nitrogen 2025, 6, 17. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, Z.M.; Li, L.Q.; Li, Y.; Liu, Y.; Luo, Y.M.; Li, G.X.; Yuan, J. Effects of dicyandiamide, phosphogypsum and superphosphate on greenhouse gas emissions during pig manure composting. Sci. Total Environ. 2022, 846, 157487. [Google Scholar] [CrossRef]
- Jiang, J.S.; Kang, K.; Wang, C.J.; Sun, X.J.; Dang, S.; Wang, N.; Wang, Y.; Zhang, C.Y.; Yan, G.X.; Li, Y.B. Evaluation of total greenhouse gas emissions during sewage sludge composting by the different dicyandiamide added forms: Mixing, surface broadcasting, and their combination. Waste Manag. 2018, 81, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Qi, X.Y.; Shi, C.; Yang, S.H.; Wu, Y. Tomato comprehensive quality evaluation and irrigation mode optimization with biogas slurry based on the combined evaluation model. Agronomy 2022, 12, 1391. [Google Scholar] [CrossRef]
- Li, J.P.; Xu, X.X.; Lin, G.; Wang, Y.Q.; Liu, Y.; Zhang, M.; Zhou, J.Y.; Wang, Z.M.; Zhang, Y.H. Micro-irrigation improves grain yield and resource use efficiency by co-locating the roots and N-fertilizer distribution of winter wheat in the North China Plain. Sci. Total Environ. 2018, 643, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.P.; Pan, Z.H.; Zhang, J.; Chen, X.; Qi, Y.L.; Zhang, Z.Y.; Chen, S.Q.; Jiang, K.; Ma, S.Q.; Wang, J.L.; et al. Optimal cooperative application solutions of irrigation and nitrogen fertilization for high crop yield and friendly environment in the semi-arid region of North China. Agric. Water Manag. 2023, 283, 108326. [Google Scholar] [CrossRef]
- Wang, X.Y.; Liu, L.; Zhang, S.L.; Gao, C. Dynamic simulation and comprehensive evaluation of the water resources carrying capacity in Guangzhou city, China. Ecol. Indic. 2022, 135, 108528. [Google Scholar] [CrossRef]
- Xiang, Y.Z.; Deng, Q.; Duan, H.L.; Guo, Y. Effects of biochar application on root traits: A meta-analysis. GCB Bioenergy 2017, 9, 1563–1572. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.L.; Zhou, L.; Fu, D.J.; Chen, T.; Chen, X.M.; Wang, Q.; Zhu, W.K. The joint action of biochar and plant roots on U-stressed soil remediation: Insights from bacteriomics and metabolomics. J. Hazard. Mater. 2024, 461, 132635. [Google Scholar] [CrossRef]
- Otoni, J.P.; Matoso, S.C.G.; Pérez, X.L.O.; Silva, V.B. Potential for agronomic and environmental use of biochars derived from different organic waste. J. Clean. Prod. 2024, 449, 141826. [Google Scholar] [CrossRef]
- Beccaccia, A.; Cerisuelo, A.; Calvet, S.; Ferrer, P.; Estellés, F.; De Blas, C.; García-Rebollar, P. Effects of nutrition on digestion efficiency and gaseous emissions from slurry in growing pigs: II. Effect of protein source in practical diets. Anim. Feed Sci. Technol. 2015, 209, 137–144. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Meléndez-Martínez, A.J.; Moriana, A.; Girón, I.F.; Martín-Palomo, M.J.; Galindo, A.; Pérez-López, D.; Torrecillas, A.; Beltrán-Sinchiguano, E.; Corell, M. Yield response to regulated deficit irrigation of greenhouse cherry tomatoes. Agric. Water Manag. 2019, 213, 212–221. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Meng, J.; Wang, L.L.; Liu, X.M.; Wu, J.J.; Brookes, P.C.; Xu, J.M. Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment. Bioresour. Technol. 2013, 142, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Wang, F.; Tahmasbian, I.; Wang, Y.; Zhou, T.R.; Pan, X.Y.; Zhang, Y.L.; Li, T.Q.; Zhang, M.Y. Core soil micro-organisms and abiotic properties as key mechanisms of complementary nanoscale zerovalent iron and nitrification inhibitors in decreasing paclobutrazol residues and nitrous oxide emissions. J. Agric. Food Chem. 2024, 72, 7672–7683. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.; Jetley, U.K.; Khan, M.A.; Zutshi, S.; Fatma, T. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol. Environ. Saf. 2007, 66, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.L.; Deng, Q.; Schadt, C.W.; Mayes, M.A.; Zhang, D.Q.; Hui, D.F. Precipitation and nitrogen application stimulate soil nitrous oxide emission. Nutr. Cycl. Agroecosyst. 2021, 120, 363–378. [Google Scholar] [CrossRef]
- Li, B.; Fan, C.H.; Xiong, Z.Q.; Li, Q.L.; Zhang, M. The combined effects of nitrification inhibitor and biochar incorporation on yield-scaled N2O emissions from an intensively managed vegetable field in southeastern China. Biogeosciences 2015, 12, 2003–2017. [Google Scholar] [CrossRef]
- Balogh-Brunstad, Z.; Keller, C.K.; Dickinson, J.T.; Stevens, F.; Li, C.Y.; Bormann, B.T. Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments. Geochim. Cosmochim. Acta 2008, 72, 2601–2618. [Google Scholar] [CrossRef]
- Lv, H.F.; Zhao, Y.M.; Wang, Y.F.; Wan, L.; Wang, J.G.; Butterbach-Bahl, K.; Lin, S. Conventional flooding irrigation and over fertilization drives soil pH decrease not only in the top-but also in subsoil layers in solar greenhouse vegetable production systems. Geoderma 2020, 363, 114156. [Google Scholar] [CrossRef]
- Jiang, B.N.; Lu, M.B.; Zhang, Z.Y.; Xie, B.L.; Song, H.L. Quantifying biochar-induced greenhouse gases emission reduction effects in constructed wetlands and its heterogeneity: A multi-level meta-analysis. Sci. Total Environ. 2023, 855, 158688. [Google Scholar] [CrossRef]
- Li, Y.; Ju, X.T. Rational nitrogen application is the key to mitigate agricultural nitrous oxide emission. J. Agro-Environ. Sci. 2020, 39, 842–851. [Google Scholar]
- Ramotowski, D.; Shi, W. Nitrapyrin-based nitrification inhibitors shaped the soil microbial community via controls on soil pH and inorganic N composition. Appl. Soil Ecol. 2022, 170, 104295. [Google Scholar] [CrossRef]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Li, X.F.; Sardans, J.; Qi, M.T.; Ni, X.Y.; Zhang, M.F.; Peñuelas, J.; Yue, K.; Wu, F.Z. Nitrous oxide concentration and flux in Min River Basin of southeast China: Effects of land use, stream order and water variables. J. Hydrol. 2022, 614, 128507. [Google Scholar] [CrossRef]
Experimental Period | Treatments | Root Length (cm) | Root Average Diameter (mm) | Total Surface Area (cm2) | Total Root Volume (cm3) | Root Activity (μg g−1 h−1) |
---|---|---|---|---|---|---|
Autumn 2023 | CK1 | 3396.16g | 0.752b | 802.26g | 15.09g | 133.15g |
CK2 | 3564.08f | 0.873ab | 976.89f | 21.32f | 152.16f | |
T1 | 3814.42d | 0.967ab | 1157.86d | 27.98d | 159.11e | |
T2 | 3954.97c | 1.158ab | 1438.47c | 41.65c | 177.07c | |
T3 | 3640.58e | 0.906ab | 1035.18e | 23.43e | 165.98d | |
T4 | 4191.75b | 1.426ab | 1876.42b | 66.87b | 189.10b | |
T5 | 4640.66a | 1.479a | 2155.48a | 79.71a | 211.99a | |
Spring 2024 | CK1 | 3491.64g | 0.8543bc | 936.64g | 20.00g | 136.42g |
CK2 | 3659.56f | 0.975b | 1120.28f | 27.30f | 155.43f | |
T1 | 3909.90d | 1.069b | 1312.07d | 35.05d | 162.38e | |
T2 | 4050.44c | 1.260ab | 1602.92c | 50.50c | 180.34c | |
T3 | 3736.05e | 1.008b | 1181.99e | 29.77e | 169.25d | |
T4 | 4287.23b | 1.528ab | 2056.48b | 78.54b | 192.37b | |
T5 | 4736.14a | 1.581a | 2351.52a | 92.95a | 215.26a |
Treatments | CK1 | CK2 | T1 | T2 | T3 | T4 | T5 | |
---|---|---|---|---|---|---|---|---|
Autumn 2023 | Yield (kg ha−1) | 128,790.0 ± 120.3g | 130,020.0 ± 135.6f | 131,490.0 ± 138.4e | 131,760.0 ± 168.2d | 132,030.0 ± 155.3c | 136,860.0 ± 178.4b | 139,260.0 ± 180.2a |
IWUE (kg ha−1 mm−1) | 439.64 ± 10.36f | 443.84 ± 9.27e | 448.86 ± 13.62d | 449.78 ± 13.28cd | 450.70 ± 15.02c | 467.19 ± 15.47b | 475.38 ± 16.03a | |
PFPN (kg kg−1) | 330.23 ± 8.74e | 333.38 ± 8.77d | 337.15 ± 9.06c | 337.85 ± 6.20c | 338.54 ± 12.15c | 350.92 ± 13.47b | 357.08 ± 13.89a | |
Spring 2024 | Yield (kg ha−1) | 143,670.0 ± 166.2g | 144,390.0 ± 170.5f | 145,020.0 ± 175.4e | 147,930.0 ± 200.7d | 148,350.0 ± 238.1c | 153,060.0 ± 210.9b | 158,310.0 ± 264.3a |
IWUE (kg ha−1 mm−1) | 428.79 ± 6.25f | 430.94 ± 7.04e | 432.82 ± 8.13d | 441.51 ± 12.37c | 442.76 ± 11.08c | 456.82 ± 14.16b | 472.49 ± 15.22a | |
PFPN (kg kg−1) | 368.38 ± 14.62f | 370.23 ± 17.41e | 371.85 ± 18.04d | 379.31 ± 18.22c | 380.38 ± 10.25c | 392.46 ± 22.18b | 405.92 ± 25.37a |
A-B | B1 | B2 | B3 | B4 | B5 | B6 | B7 | Weight | Parametric Testing |
---|---|---|---|---|---|---|---|---|---|
B1 | 1.0000 | 2.0000 | 2.0000 | 1.0000 | 5.0000 | 5.0000 | 3.0003 | 0.2550 | λmax = 7.1783 CI = 0.0297 CR = 0.0218 |
B2 | 0.5000 | 1.0000 | 1.0000 | 0.5000 | 3.0003 | 3.0003 | 2.0000 | 0.1398 | |
B3 | 0.5000 | 1.0000 | 1.0000 | 0.3333 | 5.0000 | 5.0000 | 3.0003 | 0.1715 | |
B4 | 1.0000 | 2.0000 | 3.0000 | 1.0000 | 4.0000 | 4.0000 | 3.0003 | 0.2599 | |
B5 | 0.2000 | 0.3333 | 0.2000 | 0.2500 | 1.0000 | 1.0000 | 0.5000 | 0.0468 | |
B6 | 0.2000 | 0.3333 | 0.2000 | 0.2500 | 1.0000 | 1.0000 | 0.5000 | 0.0468 | |
B7 | 0.3333 | 0.5000 | 0.3333 | 0.3333 | 2.0000 | 2.0000 | 1.0000 | 0.0801 | |
B1-C | C1 | C2 | C3 | C4 | C5 | C6 | C7 | Weight | Parametric testing |
C1 | 1.0000 | 0.5000 | 0.3333 | 0.2500 | 0.2000 | 0.1667 | 0.1429 | 0.0081 | λmax = 7.1973 CI = 0.0329 CR = 0.0242 |
C2 | 2.0000 | 1.0000 | 0.5000 | 0.3333 | 0.2500 | 0.2000 | 0.1667 | 0.0118 | |
C3 | 3.0000 | 2.0000 | 1.0000 | 0.5000 | 0.3333 | 0.2500 | 0.2000 | 0.0178 | |
C4 | 4.0000 | 3.0000 | 2.0000 | 1.0000 | 0.5000 | 0.3333 | 0.2500 | 0.0269 | |
C5 | 5.0000 | 4.0000 | 3.0000 | 2.0000 | 1.0000 | 0.5000 | 0.3333 | 0.0405 | |
C6 | 6.0000 | 5.0000 | 4.0000 | 3.0000 | 2.0000 | 1.0000 | 0.5000 | 0.0606 | |
C7 | 7.0000 | 6.0000 | 5.0000 | 4.0000 | 3.0000 | 2.0000 | 1.0000 | 0.0894 | |
B2-C | C1 | C2 | C3 | C4 | C5 | C6 | C7 | Weight | Parametric testing |
C1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.5000 | 0.5000 | 0.0161 | λmax = 7.1282 CI = 0.0214 CR = 0.0157 |
C2 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.5000 | 0.5000 | 0.0161 | |
C3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.5000 | 0.0178 | |
C4 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0196 | |
C5 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0196 | |
C6 | 2.0000 | 2.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0240 | |
C7 | 2.0000 | 2.0000 | 2.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0265 | |
B3-C | C1 | C2 | C3 | C4 | C5 | C6 | C7 | Weight | Parametric testing |
C1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.5000 | 0.0218 | λmax = 7.1187 CI = 0.0198 CR = 0.0145 |
C2 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.5000 | 0.5000 | 0.0200 | |
C3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.5000 | 0.0218 | |
C4 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0241 | |
C5 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0241 | |
C6 | 1.0000 | 2.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0268 | |
C7 | 2.0000 | 2.0000 | 2.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0329 | |
B4-C | C1 | C2 | C3 | C4 | C5 | C6 | C7 | Weight | Parametric testing |
C1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.3333 | 0.3333 | 0.2000 | 0.0188 | λmax = 7.2022 CI = 0.0337 CR = 0.0248 |
C2 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.3333 | 0.3333 | 0.2000 | 0.0188 | |
C3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.5000 | 0.5000 | 0.3333 | 0.0224 | |
C4 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.5000 | 0.5000 | 0.0266 | |
C5 | 3.0000 | 3.0000 | 2.0000 | 1.0000 | 1.0000 | 0.5000 | 0.3333 | 0.0379 | |
C6 | 3.0000 | 3.0000 | 2.0000 | 2.0000 | 2.0000 | 1.0000 | 0.5000 | 0.0522 | |
C7 | 5.0000 | 5.0000 | 3.0000 | 2.0000 | 3.0000 | 2.0000 | 1.0000 | 0.0832 | |
B5-C | C1 | C2 | C3 | C4 | C5 | C6 | C7 | Weight | Parametric testing |
C1 | 1.0000 | 0.5000 | 0.5000 | 0.3333 | 0.5000 | 0.2000 | 0.1667 | 0.0021 | λmax = 7.1705 CI = 0.0284 CR = 0.0209 |
C2 | 2.0000 | 1.0000 | 1.0000 | 0.5000 | 1.0000 | 0.3333 | 0.1667 | 0.0036 | |
C3 | 2.0000 | 1.0000 | 1.0000 | 0.5000 | 2.0000 | 0.3333 | 0.2000 | 0.0044 | |
C4 | 3.0000 | 2.0000 | 2.0000 | 1.0000 | 2.0000 | 0.5000 | 0.3333 | 0.0066 | |
C5 | 2.0000 | 1.0000 | 0.5000 | 0.5000 | 1.0000 | 0.5000 | 0.3333 | 0.0039 | |
C6 | 5.0000 | 3.0000 | 3.0000 | 2.0000 | 2.0000 | 1.0000 | 0.5000 | 0.0100 | |
C7 | 6.0000 | 6.0000 | 5.0000 | 3.0000 | 3.0000 | 2.0000 | 1.0000 | 0.0163 | |
B6-C | C1 | C2 | C3 | C4 | C5 | C6 | C7 | Weight | Parametric testing |
C1 | 1.0000 | 0.5000 | 0.5000 | 0.3333 | 0.5000 | 0.2000 | 0.1429 | 0.0020 | λmax = 7.1593 CI = 0.0265 CR = 0.0195 |
C2 | 2.0000 | 1.0000 | 1.0000 | 0.5000 | 1.0000 | 0.3333 | 0.1667 | 0.0036 | |
C3 | 2.0000 | 1.0000 | 1.0000 | 0.5000 | 2.0000 | 0.3333 | 0.2000 | 0.0044 | |
C4 | 3.0000 | 2.0000 | 2.0000 | 1.0000 | 2.0000 | 0.5000 | 0.3333 | 0.0065 | |
C5 | 2.0000 | 1.0000 | 0.5000 | 0.5000 | 1.0000 | 0.5000 | 0.3333 | 0.0038 | |
C6 | 5.0000 | 3.0000 | 3.0000 | 2.0000 | 2.0000 | 1.0000 | 0.5000 | 0.0099 | |
C7 | 7.0000 | 6.0000 | 5.0000 | 3.0000 | 3.0000 | 2.0000 | 1.0000 | 0.0166 | |
B7-C | C1 | C2 | C3 | C4 | C5 | C6 | C7 | Weight | Parametric testing |
C1 | 1.000 | 0.500 | 0.500 | 0.333 | 0.333 | 0.200 | 0.167 | 0.0032 | λmax = 7.1911 CI = 0.0318 CR = 0.0234 |
C2 | 2.000 | 1.000 | 0.500 | 0.333 | 0.333 | 0.250 | 0.167 | 0.0043 | |
C3 | 2.000 | 2.000 | 1.000 | 0.500 | 0.500 | 0.333 | 0.200 | 0.0060 | |
C4 | 3.000 | 3.000 | 2.000 | 1.000 | 2.000 | 0.500 | 0.333 | 0.0114 | |
C5 | 3.000 | 3.000 | 2.000 | 0.500 | 1.000 | 0.333 | 0.250 | 0.0091 | |
C6 | 5.000 | 4.000 | 3.000 | 2.000 | 3.000 | 1.000 | 0.500 | 0.0182 | |
C7 | 6.000 | 6.000 | 5.000 | 3.000 | 4.000 | 2.000 | 1.000 | 0.0279 |
Treatments | Weight of Evaluation Indicators | Global Weight | ||||||
---|---|---|---|---|---|---|---|---|
Yield (kg ha−1) | IWUE (kg ha−1 mm−1) | PFPN (kg kg−1) | Cumulative N2O Emissions (kg ha−1) | Root Length (cm) | Root Average Diameter (mm) | Root Activity (μg g−1 h−1) | ||
CK1 | 0.0081 | 0.0161 | 0.0218 | 0.0188 | 0.0021 | 0.0020 | 0.0032 | 0.0134 |
CK2 | 0.0118 | 0.0161 | 0.0200 | 0.0188 | 0.0036 | 0.0036 | 0.0043 | 0.0142 |
T1 | 0.0178 | 0.0178 | 0.0218 | 0.0224 | 0.0044 | 0.0044 | 0.0060 | 0.0175 |
T2 | 0.0269 | 0.0196 | 0.0241 | 0.0266 | 0.0066 | 0.0065 | 0.0114 | 0.0222 |
T3 | 0.0405 | 0.0196 | 0.0241 | 0.0379 | 0.0039 | 0.0038 | 0.0091 | 0.0281 |
T4 | 0.0606 | 0.0240 | 0.0268 | 0.0522 | 0.0100 | 0.0099 | 0.0182 | 0.0394 |
T5 | 0.0894 | 0.0265 | 0.0329 | 0.0832 | 0.0163 | 0.0166 | 0.0279 | 0.0576 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sa, Q.; Zheng, J.; Li, H.; Wang, Y.; Li, Z. Effects of Biochar and Dicyandiamide on Root Traits, Yield, and Soil N2O Emissions of Greenhouse Tomato Under a Biogas Slurry Hole Irrigation System. Nitrogen 2025, 6, 73. https://doi.org/10.3390/nitrogen6030073
Sa Q, Zheng J, Li H, Wang Y, Li Z. Effects of Biochar and Dicyandiamide on Root Traits, Yield, and Soil N2O Emissions of Greenhouse Tomato Under a Biogas Slurry Hole Irrigation System. Nitrogen. 2025; 6(3):73. https://doi.org/10.3390/nitrogen6030073
Chicago/Turabian StyleSa, Qinglin, Jian Zheng, Haolin Li, Yan Wang, and Zifan Li. 2025. "Effects of Biochar and Dicyandiamide on Root Traits, Yield, and Soil N2O Emissions of Greenhouse Tomato Under a Biogas Slurry Hole Irrigation System" Nitrogen 6, no. 3: 73. https://doi.org/10.3390/nitrogen6030073
APA StyleSa, Q., Zheng, J., Li, H., Wang, Y., & Li, Z. (2025). Effects of Biochar and Dicyandiamide on Root Traits, Yield, and Soil N2O Emissions of Greenhouse Tomato Under a Biogas Slurry Hole Irrigation System. Nitrogen, 6(3), 73. https://doi.org/10.3390/nitrogen6030073