Effect of Biochar on the Nitrogen Mineralization of Commercial Organic Fertilizers in Both Mineral Soil and Organic Potting Media
Abstract
1. Introduction
2. Materials and Methods
2.1. Initial Soil and Material Characteristics
2.2. Incubation
2.3. Carbon Indices
2.4. Ammonia Volatilization and Soil PH
2.5. Nitrogen Mineralization Calculation and Statistical Analysis
3. Results
3.1. Soil and Fertilizer Analysis
3.2. Effect of Biochar on N Mineralization from Soil and Potting Media
3.3. Effect of Biochar on Mineralization from Fertilizers
3.4. pH Impact NH3 Volatilization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- USDA ERS—Organic Agriculture. Available online: https://www.ers.usda.gov/topics/natural-resources-environment/organic-agriculture/#:~:text=According%20to%20USDA%2C%20National%20Agricultural,percent%20(to%2017%2C445%20farms)%20over (accessed on 11 January 2024).
- Snyder, L.; Schonbeck, M.; Vélez, T.; Tencer, B. Outcomes and Recommendations from the 2020 National Organic & Transitioning Farmer Surveys and Focus Groups; Organic Farming Research Foundation: Santa Cruz, CA, USA, 2022. [Google Scholar]
- Power, J.F.; Papendick, R.I. Organic sources of nutrients. In Fertilizer Technology and Use; Wiley: Hoboken, NJ, USA, 2015; pp. 503–520. [Google Scholar] [CrossRef]
- Card, A.; Whiting, D.; Wilson, C.; Reeder, J.; Goldhamer, D.; Oleszak, H. CMG Gardennotes #234 Organic Fertilizers—Colorado Master Gardener. Organic Fertilizers. 2015. Available online: https://cmg.extension.colostate.edu/Gardennotes/234.pdf (accessed on 9 February 2024).
- Sánchez, E.; Richard, T. Using Organic Nutrient Source; The Pennsylvania State University: Pennsylvania, PA, USA, 2013; Available online: https://extension.psu.edu/using-organic-nutrient-sources (accessed on 9 February 2024).
- Cassity-Duffey, K.; Cabrera, M.; Gaskin, J.; Franklin, D.; Kissel, D.; Saha, U. Nitrogen mineralization from organic materials and fertilizers: Predicting N release. Soil Sci. Soc. Am. J. 2020, 84, 522–533. [Google Scholar] [CrossRef]
- De Jesus, H.I.; Cassity-Duffey, K.; Dutta, B.; da Silva, A.L.B.R.; Coolong, T. Influence of Soil Type and Temperature on Nitrogen Mineralization from Organic Fertilizers. Nitrogen 2024, 5, 47–61. [Google Scholar] [CrossRef]
- Geisseler, D.; Smith, R.; Cahn, M.; Muramoto, J. Nitrogen mineralization from organic fertilizers and composts: Literature survey and model fitting. J. Environ. Qual. 2021, 50, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Lazicki, P.; Geisseler, D.; Lloyd, M. Nitrogen mineralization from organic amendments is variable but predictable. J. Environ. Qual. 2020, 49, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Tei, F.; de Neve, S.; de Haan, J.; Kristensen, H.L. Nitrogen management of vegetable crops. Agric. Water Manag. 2020, 240, 106316. [Google Scholar] [CrossRef]
- Berry, P.M.; Sylvester-Bradley, R.; Philipps, L.; Hatch, D.J.; Cuttle, S.P.; Rayns, F.W.; Gosling, P. Is the productivity of organic farms restricted by the supply of available nitrogen? Soil Use Manag. 2002, 18, 248–255. [Google Scholar] [CrossRef]
- Möller, K. Soil fertility status and nutrient input–output flows of specialised organic cropping systems: A review. Nutr. Cycl. Agroecosyst. 2018, 112, 147–164. [Google Scholar] [CrossRef]
- Cassity-Duffey, K.; Cabrera, M.; Franklin, D.; Gaskin, J.; Kissel, D. Effect of soil texture on nitrogen mineralization from organic fertilizers in four common southeastern soils. Soil Sci. Soc. Am. J. 2020, 84, 534–542. [Google Scholar] [CrossRef]
- Erwiha, G.M.; Ham, J.; Sukor, A.; Wickham, A.; Davis, J.G. Organic Fertilizer Source and Application Method Impact Ammonia Volatilization. Commun. Soil Sci. Plant Anal. 2020, 51, 1469–1482. [Google Scholar] [CrossRef]
- Burnett, S.E.; Mattson, N.S.; Williams, K.A. Substrates and fertilizers for organic container production of herbs, vegetables, and herbaceous ornamental plants grown in greenhouses in the United States. Sci. Hortic. 2016, 208, 111–119. [Google Scholar] [CrossRef]
- Goh, K.M. Evaluation of potting media for commercial nursery production of container-grown plants. N. Z. J. Agric. Res. 1979, 22, 163–171. [Google Scholar] [CrossRef]
- Dion, P.P.; Jeanne, T.; Thériault, M.; Hogue, R.; Pepin, S.; Dorais, M. Nitrogen release from five organic fertilizers commonly used in greenhouse organic horticulture with contrasting effects on bacterial communities. Can. J. Soil Sci. 2020, 100, 120–135. [Google Scholar] [CrossRef]
- Isaac, D.; Labbancz, J.; Knowles, N.R.; Tenic, E.; Horgan, A.; Ghogare, R.; Dhingra, A. Biomass Source of Biochar and Genetic Background of Tomato Influence Plant Growth and Development and Fruit Quality. Horticulturae 2024, 10, 368. [Google Scholar] [CrossRef]
- Lehmann, J.; Czimczik, C.; Laird, D.; Sohi, S. Stability of biochar in soil. In Biochar for Environmental Management; Routledge: Oxfordshire, UK, 2012; pp. 215–238. [Google Scholar]
- Bai, S.H.; Omidvar, N.; Gallart, M.; Kämper, W.; Tahmasbian, I.; Farrar, M.B.; Singh, K.; Zhou, G.; Muqadass, B.; Xu, C.Y.; et al. Combined effects of biochar and fertilizer applications on yield: A review and meta-analysis. Sci. Total Environ. 2022, 808, 152073. [Google Scholar] [CrossRef] [PubMed]
- Tenic, E.; Ghogare, R.; Dhingra, A. Biochar—A panacea for agriculture or just carbon? Horticulturae 2020, 6, 37. [Google Scholar] [CrossRef]
- Lehmann, J. Bioenergy in the black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef]
- Shen, Z.; Hou, D.; Jin, F.; Shi, J.; Fan, X.; Tsang, D.C.W.; Alessi, D.S. Effect of production temperature on lead removal mechanisms by rice straw biochars. Sci. Total Environ. 2019, 655, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management; Routledge: Oxfordshire, UK, 2015; pp. 1–13. [Google Scholar]
- Zhao, L.; Cao, X.; Mašek, O.; Zimmerman, A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 2013, 256–257, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Clough, T.J.; Condron, L.M.; Kammann, C.; Müller, C. A review of biochar and soil nitrogen dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef]
- Bruun, E.W.; Ambus, P.; Egsgaard, H.; Hauggaard-Nielsen, H. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol. Biochem. 2012, 46, 73–79. [Google Scholar] [CrossRef]
- Castaldi, S.; Riondino, M.; Baronti, S.; Esposito, F.R.; Marzaioli, R.; Rutigliano, F.A.; Vaccari, F.P.; Miglietta, F. Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere 2011, 85, 1464–1471. [Google Scholar] [CrossRef] [PubMed]
- Lentz, R.D.; Ippolito, J.A.; Spokas, K.A. Biochar and Manure Effects on Net Nitrogen Mineralization and Greenhouse Gas Emissions from Calcareous Soil under Corn. Soil Sci. Soc. Am. J. 2014, 78, 1641–1655. [Google Scholar] [CrossRef]
- Doydora, S.A.; Cabrera, M.L.; Das, K.C.; Gaskin, J.W.; Sonon, L.S.; Miller, W.P. Release of nitrogen and phosphorus from poultry litter amended with acidified biochar. Int. J. Environ. Res. Public Health 2011, 8, 1491–1502. [Google Scholar] [CrossRef] [PubMed]
- Burnett, S.E.; Stack, L.B. Survey of the research needs of the potential organic ornamental bedding plant industry in Maine. HortTechnology 2009, 19, 743–747. [Google Scholar] [CrossRef]
- USDA. Cecil Series. Official Series Description—CECIL Series. 2007. Available online: https://soilseries.sc.egov.usda.gov/OSD_Docs/C/Cecil.html (accessed on 9 February 2024).
- Klute, A. Methods of Soil Analysis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Clark, S.; Cavigelli, M. Suitability of composts as potting media for production of organic vegetable transplants. Compost. Sci. Util. 2005, 13, 150–155. [Google Scholar] [CrossRef]
- Priha, O.; Smolander, A. Nitrogen transformations in soil under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Soil Biol. Biochem. 1999, 31, 965–977. [Google Scholar] [CrossRef]
- Goh, K.M.; Haynes, R.J. Evaluation of potting media for commercial nursery production of container-grown plants: 1. Physical and chemical characteristics of soil and soilless media and their constituents. N. Z. J. Agric. Res. 1977, 20, 363–370. [Google Scholar] [CrossRef]
- Black, C.A.; Evans, D.D.; Ensminger, L.E.; White, J.L.; Clark, F.E. (Eds.) Methods of Soil Analysis; Physical and Mineralogical Properties; American Society of Agronomy: Madison, WI, USA, 1973. [Google Scholar]
- Miller, R.O.; Kissel, D.E. Comparison of Soil pH Methods on Soils of North America. Soil Sci. Soc. Am. J. 2010, 74, 310–316. [Google Scholar] [CrossRef]
- USEPA. EPA Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry. 1994. Available online: https://www.epa.gov/esam/epa-method-2008-determination-trace-elements-waters-and-wastes-inductively-coupled-plasma-mass (accessed on 9 February 2024).
- USEPA. SW-846 Test Method 3052: Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices. EPA. 1996. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-3052-microwave-assisted-acid-digestion-siliceous-and-organically-based (accessed on 9 February 2024).
- Kirsten, W.J. Automatic Methods for the Simultaneous Determination of Carbon, Hydrogen, Nitrogen, and Sulfur, and for Sulfur Alone in Organic and Inorganic Materials. Anal. Chem. 1979, 51, 1173–1179. [Google Scholar] [CrossRef]
- Kissel, D.E.; Sonon, L. (Eds.) Soil Test Handbook for Georgia; Special Bulletin 62; University of Georgia, College of Agricultural and Environmental Sciences, Agricultural Environmental Services Laboratories: Athens, GA, USA, 2008; Available online: https://aesl.ces.uga.edu/publications/soil/sthandbook.pdf (accessed on 9 February 2024).
- Page, A.L. Methods of Soil Analysis. Part 2, Chemical and Microbiological Properties; American Society of Agronomy: Soil Science Society of America: Madison, WI, USA, 1986. [Google Scholar]
- Carlson, R.M. Automated Separation and Conductimetric Determination of Ammonia and Dissolved Carbon Dioxide. Anal. Chem. 1978, 50, 1528–1531. [Google Scholar] [CrossRef]
- Saha, U.K.; Sonon, L.; Biswas, B.K. A Comparison of Diffusion-Conductimetric and Distillation-Titration Methods in Analyzing Ammonium- and Nitrate-Nitrogen in the KCl-Extracts of Georgia Soils. Commun. Soil Sci. Plant Anal. 2018, 49, 63–75. [Google Scholar] [CrossRef]
- Ernst, J.W.; Massey, H.F. The Effects of Several Factors on Volatilization of Ammonia Formed from Urea in the Soil. Soil Sci. Soc. Am. J. 1960, 24, 87–90. [Google Scholar] [CrossRef]
- R Core Team. R: A language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Zhang, A.; Liu, Y.; Pan, G.; Hussain, Q.; Li, L.; Zheng, J.; Zhang, X. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 2012, 351, 263–275. [Google Scholar] [CrossRef]
- Messiga, A.J.; Hao, X.; Ziadi, N.; Dorais, M. Reducing peat in growing media: Impact on nitrogen content, microbial activity, and CO2 and N2 O emissions. Can. J. Soil Sci. 2020, 102, 77–87. [Google Scholar] [CrossRef]
- Lévesque, V.; Jeanne, T.; Dorais, M.; Ziadi, N.; Hogue, R.; Antoun, H. Biochars improve tomato and sweet pepper performance and shift bacterial composition in a peat-based growing medium. Appl. Soil Ecol. 2020, 153, 103579. [Google Scholar] [CrossRef]
- El-Naggar, A.; El-Naggar, A.H.; Shaheen, S.M.; Sarkar, B.; Chang, S.X.; Tsang, D.C.W.; Rinklebe, J.; Ok, Y.S. Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review. J. Environ. Manag. 2019, 241, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Amha, Y.; Bohne, H. Denitrification from the horticultural peats: Effects of pH, nitrogen, carbon, and moisture contents. Biol. Fertil. Soils 2011, 47, 293–302. [Google Scholar] [CrossRef]
- Lévesque, V.; Rochette, P.; Ziadi, N.; Dorais, M.; Antoun, H. Mitigation of CO2, CH4 and N2O from a fertigated horticultural growing medium amended with biochars and a compost. Appl. Soil Ecol. 2018, 126, 129–139. [Google Scholar] [CrossRef]
- Manirakiza, E.; Ziadi, N.; Luce, M.; Hamel, C.; Antoun, H.; Karam, A. Nitrogen mineralization and microbial biomass carbon and nitrogen in response to co-application of biochar and paper mill biosolids. Appl. Soil Ecol. 2019, 142, 90–98. [Google Scholar] [CrossRef]
- Cannavo, P.; Recous, S.; Valé, M.; Bresch, S.; Paillat, L.; Benbrahim, M.; Guénon, R. Organic Fertilization of Growing Media: Response of N Mineralization to Temperature and Moisture. Horticulturae 2022, 8, 152. [Google Scholar] [CrossRef]
- Paillat, L.; Cannavo, P.; Barraud, F.; Huché-Thélier, L.; Guénon, R. Growing medium type affects organic fertilizer mineralization and cnps microbial enzyme activities. Agronomy 2020, 10, 1955. [Google Scholar] [CrossRef]
- Schomberg, H.H.; Gaskin, J.W.; Harris, K.; Das, K.C.; Novak, J.M.; Busscher, W.J.; Watts, D.W.; Woodroof, R.H.; Lima, I.M.; Ahmedna, M.; et al. Influence of Biochar on Nitrogen Fractions in a Coastal Plain Soil. J. Environ. Qual. 2012, 41, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
Soil | Total C | Total N | NH4-N | NO3-N | P | K | pH 1 | CEC | 70% WHC 2 |
---|---|---|---|---|---|---|---|---|---|
% | mg kg−1 Dry Material | mEq 100 g−1 | g H2O 100 g−1 | ||||||
Cecil | 1.6 | 0.1 | 0.1 | 24.3 | 97.0 | 71.1 | 5.1 | 6.1 | 16.0 |
Organic Potting Media | 34.9 | 0.9 | 3.9 | 724.1 | 126.0 | 538.7 | 5.3 | 100.6 | 228.0 |
Material | C:N | Total C | Total N | NH4-N | NO3-N | Inorganic N |
---|---|---|---|---|---|---|
% | mg kg -1 Dry Material | |||||
Biochar | 125.0 | 45.0 | 0.4 | 165.4 | - | 165.4 |
Feather Meal | 3.7 | 53.1 | 14.3 | 967.4 | - | 967.4 |
Pellet Mix | 3.9 | 41.1 | 10.6 | 1230.0 | 57.2 | 1287.2 |
Biochar Rate | Cecil Soil | Potting Media |
---|---|---|
mg Inorganic N kg −1 Dry Material (mg Inorganic N g−1 C) 1 | ||
0% | 42.8 (0) a 2 | 190.0 (0) a |
5% | 38.0 (5.9) a | −286.9 (17.4) b |
10% | 43.3 (2.8) a | −155.5 (7.4) b |
Material | Total C | Soluble C | NO3-N | CO2 |
---|---|---|---|---|
mg kg−1 Dry Substrate | ||||
Cecil | 16,000 | 48.0 | 24.3 | - |
Organic Potting Media | 349,000 | 697.8 | 724.1 | 630.1 |
5% Biochar (added to media) | 40,179 | 120.5 | - | - |
10% Biochar (added to media) | 80,357 | 242.0 | - | 1482.0 |
Fertilizer | Biochar Rate | Cecil Soil | Potting Media |
---|---|---|---|
% net N min of Organic N Applied (mg Inorganic N kg −1 Dry Soil) 1 | |||
Feather Meal | 0% | 42.3 (57.8) A b 2 | 68.7 (760.0) A a |
5% | 42.1 (57.4) A b | 66.9 (739.4) A a | |
10% | 42.1 (57.5) A a | 55.7 (616.3) A a | |
Pellet Mix | 0% | 46.5 (60.9) B a | 57.8 (612.5) A a |
5% | 28.1 (36.8) A b | 52.4 (555.1) A a | |
10% | 45.5 (59.5) AB a | 51.8 (548.3) A a |
Treatments | Unfertilized (Control) | Feather Meal | Pellet Mix | ||
---|---|---|---|---|---|
Material | Biochar Rate | d 0 | d 60 | d 60 | |
Cecil | 0% | 4.6 a 1 | 4.7 a | 4.3 a | 4.4 a |
Cecil | 5% | 6.3 b | 6.4 b | 6.2 b | 6.2 b |
Cecil | 10% | 6.9 c | 7.1 c | 6.9 c | 6.9 c |
Potting Media | 0% | 5.2 a | 5.3 a | 5.0 a | 5.0 a |
Potting Media | 5% | 6.4 b | 6.4 b | 6.1 b | 6.1 b |
Potting Media | 10% | 6.8 c | 7.0 c | 6.9 c | 6.9 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulliam, J.J.; Cassity-Duffey, K.; Cabrera, M. Effect of Biochar on the Nitrogen Mineralization of Commercial Organic Fertilizers in Both Mineral Soil and Organic Potting Media. Nitrogen 2025, 6, 71. https://doi.org/10.3390/nitrogen6030071
Pulliam JJ, Cassity-Duffey K, Cabrera M. Effect of Biochar on the Nitrogen Mineralization of Commercial Organic Fertilizers in Both Mineral Soil and Organic Potting Media. Nitrogen. 2025; 6(3):71. https://doi.org/10.3390/nitrogen6030071
Chicago/Turabian StylePulliam, James Johnathan, Kate Cassity-Duffey, and Miguel Cabrera. 2025. "Effect of Biochar on the Nitrogen Mineralization of Commercial Organic Fertilizers in Both Mineral Soil and Organic Potting Media" Nitrogen 6, no. 3: 71. https://doi.org/10.3390/nitrogen6030071
APA StylePulliam, J. J., Cassity-Duffey, K., & Cabrera, M. (2025). Effect of Biochar on the Nitrogen Mineralization of Commercial Organic Fertilizers in Both Mineral Soil and Organic Potting Media. Nitrogen, 6(3), 71. https://doi.org/10.3390/nitrogen6030071