Optimizing Nitrogen and Water Use Efficiency in Wheat Cropping Systems Through Integrated Application of Biochar and Bokashi Under Different Irrigation Regimes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pot Experimental Design
2.2. Production and Characterization of Biochar and Bokashi
2.3. Sample Analysis, Calculations of NUE and WUE
2.4. Statistical Analysis
3. Results
3.1. Grain Yield
3.2. Straw Yield
3.3. N Content % (Grain and Straw)
3.4. Grain Nitrogen Uptake (GNU)
3.5. Straw Nitrogen Uptake (SNU)
3.6. Total Nitrogen Uptake (TNU)
3.7. Nitrogen Harvesting Index (NHI) and Grain Protein Content (GPC)
3.8. AEN, AREN and PEN
3.9. Relation Between TNU and TB
3.10. Relation Between GY and WUE
3.11. Correlation Matrix Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ndegwa, J.K.; Gichimu, B.M.; Mugwe, J.N.; Mucheru-Muna, M.; Njiru, D.M. Integrated Soil Fertility and Water Management Practices for Enhanced Agricultural Productivity. Int. J. Agron. 2023, 2023, 8890794. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Farouk, A.S.; Abdelghany, A.M.; Shehab, A.A.; Alwakel, S.E.; Makled, K.M.; Naif, E.; Ren, H.; Lamlom, S.F. Optimizing wheat productivity through integrated management of irrigation, nutrition, and organic amendments. BMC Plant Biol. 2024, 24, 548. [Google Scholar] [CrossRef]
- Hirel, B.; Tétu, T.; Lea, P.J.; Dubois, F. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- Govindasamy, P.; Muthusamy, S.K.; Bagavathiannan, M.; Mowrer, J.; Jagannadham, P.T.K.; Maity, A.; Halli, H.M.; Sujayananad, G.K.; Vadivel, R.; Das, T.K.; et al. Nitrogen use efficiency—A key to enhance crop productivity under a changing climate. Front. Plant Sci. 2023, 14, 1121073. [Google Scholar] [CrossRef]
- Agegnehu, G.; Nelson, P.N.; Bird, M.I. The effects of biochar, compost and their mixture and nitrogen fertilizer on yield and nitrogen use efficiency of barley grown on a Nitisol in the highlands of Ethiopia. Sci. Total Environ. 2016, 569–570, 869–879. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Manono, B.O.; Moller, H.; Benge, J.; Carey, P.; Lucock, D.; Manhire, J. Assessment of soil properties and earthworms in organic and conventional farming systems after seven years of dairy farm conversions in New Zealand. Agroecol. Sustain. Food Syst. 2019, 43, 678–704. [Google Scholar] [CrossRef]
- Abo-Sido, N.; Goss, J.; Griffith, A.; Klepac, V. Microbial transformation of traditional fermented fertilizer bokashi alters chemical composition and improves plant growth. bioRxiv 2021. [Google Scholar] [CrossRef]
- Boechat, C.L.; Santos, J.A.G.; Accioly, A.M.d.A. Mineralização líquida de nitrogênio e mudanças químicas no solo com a aplicação de resíduos orgânicos com “Composto Fermentado Bokashi”. Acta Scientiarum. Agron. 2013, 35, 257–264. [Google Scholar] [CrossRef]
- Pagliaccia, D.; Ortiz, M.; Rodriguez, M.V.; Abbott, S.; De Francesco, A.; Amador, M.; Lavagi, V.; Maki, B.; Hopkins, F.; Kaplan, J.; et al. Enhancing soil health and nutrient availability for Carrizo citrange (X Citroncirus sp.) through bokashi and biochar amendments: An exploration into indoor sustainable soil ecosystem management. Sci. Hortic. 2024, 326, 112661. [Google Scholar] [CrossRef]
- Shahardeen, R.; Seran, T. Impact of animal manure EM-bokashi on seed yield and quality of vegetable cowpea (Vigna unguiculata L.). Bangladesh J. Sci. Ind. Res. 2013, 48, 33–38. [Google Scholar] [CrossRef]
- Zaman, M.; Ahmed, M.; Gogoi, P. Effect of Bokashi on plant growth, yield and essential oil quantity and quality in Patchouli (Pogostemon cablin Benth.). Biosci. Biotechnol. Res. Asia 2010, 7, 383–387. [Google Scholar]
- Paiman, P.A. Application of Bokashi Fertilizer and Duration of Water Supply to Increase Growth, Yields, and Quality of Shallot in Dryland. Int. J. Des. Nat. Ecodynamics 2020, 15, 711–719. [Google Scholar] [CrossRef]
- Glycine, S.; Merrill, L. Influence of Bokashi Fertilizers on Soil Chemical Properties, Soybean (Glycine max (L.) Merrill) Yield Components and Production. WSEAS Trans. Biol. Biomed. 2016, 13, 134–141. [Google Scholar]
- Quiroz, M.; Céspedes, C. Bokashi as an Amendment and Source of Nitrogen in Sustainable Agricultural Systems: A Review. J. Soil Sci. Plant Nutr. 2019, 19, 237–248. [Google Scholar] [CrossRef]
- Roldi, M.; Dias-Arieira, C.R.; Severino, J.J.; De Melo Santana, S.; Dadazio, T.S.; Marini, P.M.; Mattei, D. Use of organic amendments to control meloidogyne incognita on tomatoes. Nematropica 2013, 43, 49–55. [Google Scholar]
- Xu, H.L.; Wang, R.; Mridha, M.A.U. Effects of organic fertilizers and a microbial inoculant on leaf photosynthesis and fruit yield and quality of tomato plants. J. Crop Prod. 2000, 3, 173–182. [Google Scholar] [CrossRef]
- Jeffery, S.; Meinders, M.B.; Stoof, C.R.; Bezemer, T.M.; van de Voorde, T.F.; Mommer, L.; van Groenigen, J.W. Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma 2015, 251–252, 47–54. [Google Scholar] [CrossRef]
- Paneque, M.; De la Rosa, J.M.; Franco-Navarro, J.D.; Colmenero-Flores, J.M.; Knicker, H. Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions. Catena 2016, 147, 280–287. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management; Routledge: London, UK, 2015. [Google Scholar] [CrossRef]
- Basso, A.S.; Miguez, F.E.; Laird, D.A.; Horton, R.; Westgate, M. Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy 2013, 5, 132–143. [Google Scholar] [CrossRef]
- Allen, J.M.; Longer, D.E.; Gbur, E.E.; Hao, L. The influences of poultry litter biochar and water source on radish growth and nutrition. Discov. Student J. Dale Bump. Coll. Agric. Food Life Sci. 2014, 15, 4–10. [Google Scholar]
- Akhtar, S.S.; Li, G.; Andersen, M.N.; Liu, F. Biochar enhances yield and quality of tomato under reduced irrigation. Agric. Water Manag. 2014, 138, 37–44. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Using poultry litter biochars as soil amendments. Aust. J. Soil Res. 2008, 46, 437–444. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Tammeorg, P.; Simojoki, A.; Mäkelä, P.; Stoddard, F.L.; Alakukku, L.; Helenius, J. Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand. Agric. Ecosyst. Environ. 2014, 191, 108–116. [Google Scholar] [CrossRef]
- Tari, A.F. The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions. Agric. Water Manag. 2016, 167, 1–10. [Google Scholar] [CrossRef]
- Singh, M.; Saini, R.K.; Singh, S.; Sharma, S.P. Potential of Integrating Biochar and Deficit Irrigation Strategies for Sustaining Vegetable Production in Water-limited Regions: A review. HortScience 2019, 54, 1872–1878. [Google Scholar] [CrossRef]
- Gathala, M.K.; Ladha, J.K.; Saharawat, Y.S.; Kumar, V.; Kumar, V.; Sharma, P.K. Effect of Tillage and Crop Establishment Methods on Physical Properties of a Medium-Textured Soil under a Seven-Year Rice−Wheat Rotation. Soil Sci. Soc. Am. J. 2011, 75, 1851–1862. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef]
- Trupiano, D.; Cocozza, C.; Baronti, S.; Amendola, C.; Vaccari, F.P.; Lustrato, G.; Di Lonardo, S.; Fantasma, F.; Tognetti, R.; Scippa, G.S. The effects of biochar and its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties, and soil microbial activity and abundance. Int. J. Agron. 2017, 2017, 3158207. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, X.; Wang, S.; Pu, X. Benefits of organic manure combined with biochar amendments to cotton root growth and yield under continuous cropping systems in Xinjiang, China. Sci. Rep. 2020, 10, 4718. [Google Scholar] [CrossRef] [PubMed]
- Adekiya, A.O.; Agbede, T.M.; Aboyeji, C.M.; Dunsin, O.; Simeon, V.T. Effects of biochar and poultry manure on soil characteristics and the yield of radish. Sci. Hortic. 2019, 243, 457–463. [Google Scholar] [CrossRef]
- Dou, L.; Komatsuzaki, M.; Nakagawa, M. Effects of Biochar, Mokusakueki and Bokashi application on soil nutrients, yields and qualities of sweet potato. Int. Res. J. Agric. Sci. Soil Sci. 2012, 2, 318–327. [Google Scholar]
- Maass, V.; Céspedes, C.; Cárdenas, C. Effect of Bokashi improved with rock phosphate on parsley cultivation under organic greenhouse management. Chil. J. Agric. Res. 2020, 80, 444–451. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, A.; Ji, C.; Joseph, S.; Bian, R.; Li, L.; Pan, G.; Paz-Ferreiro, J. Biochar’s effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data. Plant Soil 2013, 373, 583–594. [Google Scholar] [CrossRef]
- Lentz, R.D.; Ippolito, J.A.; Spokas, K.A. Biochar and Manure Effects on Net Nitrogen Mineralization and Greenhouse Gas Emissions from Calcareous Soil under Corn. Soil Sci. Soc. Am. J. 2014, 78, 1641–1655. [Google Scholar] [CrossRef]
- Zhou, M.; Ying, S.; Chen, J.; Jiang, P.; Teng, Y. Effects of biochar-based fertilizer on nitrogen use efficiency and nitrogen losses via leaching and ammonia volatilization from an open vegetable field. Environ. Sci. Pollut. Res. 2021, 28, 65188–65199. [Google Scholar] [CrossRef]
- Cheng, Y.; Bu, X.; Li, J.; Ji, Z.; Wang, C.; Xiao, X.; Li, F. Application of biochar and compost improved soil properties and enhanced plant growth in a Pb—Zn mine tailings soil. Environ. Sci. Pollut. Res. 2023, 30, 32337–32347. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Li, Y.C. The role of nutrient efficient plants in improving crop yields in the twenty first century. J. Plant Nutr. 2008, 31, 1121–1157. [Google Scholar] [CrossRef]
- Sun, L.; Li, B.; Yao, M.; Niu, D.; Gao, M.; Mao, L.; Xu, Z.; Wang, T.; Wang, J. Optimising water and nitrogen management for greenhouse tomatoes in Northeast China using EWM−TOPSIS−AISM model. Agric. Water Manag. 2023, 290, 108579. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Wei, W.; Cui, S.; Tang, W.; Li, Y. Determining effects of water and nitrogen inputs on wheat yield and water productivity and nitrogen use efficiency in China: A quantitative synthesis. Agric. Water Manag. 2020, 242, 106397. [Google Scholar] [CrossRef]
- Pandit, N.R.; Schmidt, H.P.; Mulder, J.; Hale, S.E.; Husson, O.; Cornelissen, G. Nutrient effect of various composting methods with and without biochar on soil fertility and maize growth. Arch. Agron. Soil Sci. 2020, 66, 250–265. [Google Scholar] [CrossRef]
- Shaaban, A.; Hemida, K.A.; Abd El-Mageed, T.A.; Semida, W.M.; AbuQamar, S.F.; El-Saadony, M.T.; Al-Elwany, O.A.A.I.; El-Tarabily, K.A. Incorporation of compost and biochar enhances yield and medicinal compounds in seeds of water-stressed Trigonella foenum-graecum L. plants cultivated in saline calcareous soils. BMC Plant Biol. 2024, 24, 538. [Google Scholar] [CrossRef]
- Pandit, N.R.; Mulder, J.; Hale, S.E.; Zimmerman, A.R.; Pandit, B.H.; Cornelissen, G. Multi-year double cropping biochar field trials in Nepal: Finding the optimal biochar dose through agronomic trials and cost-benefit analysis. Sci. Total Environ. 2018, 637–638, 1333–1341. [Google Scholar] [CrossRef]
- Ali, I.; He, L.; Ullah, S.; Quan, Z.; Wei, S.; Iqbal, A.; Munsif, F.; Shah, T.; Xuan, Y.; Luo, Y.; et al. Biochar addition coupled with nitrogen fertilization impacts on soil quality, crop productivity, and nitrogen uptake under double-cropping system. Food Energy Secur. 2020, 9, e208. [Google Scholar] [CrossRef]
- Khan, M.A.; Basir, A.; Fahad, S.; Adnan, M.; Saleem, M.H.; Iqbal, A.; Amanullah; Al-Huqail, A. A.; Alosaimi, A.A.; Saud, S.; et al. Biochar Optimizes Wheat Quality, Yield, and Nitrogen Acquisition in Low Fertile Calcareous Soil Treated With Organic and Mineral Nitrogen Fertilizers. Front. Plant Sci. 2022, 13, 879788. [Google Scholar] [CrossRef]
- Zulfiqar, B.; Raza, M.A.S.; Saleem, M.F.; Aslam, M.U.; Iqbal, R.; Muhammad, F.; Amin, J.; Ibrahim, M.A.; Khan, I.H. Biochar enhances wheat crop productivity by mitigating the effects of drought: Insights into physiological and antioxidant defense mechanisms. PLoS ONE 2022, 17, e0267819. [Google Scholar] [CrossRef]
- Zaheer, M.S.; Ali, H.H.; Soufan, W.; Iqbal, R.; Habib-Ur-rahman, M.; Iqbal, J.; Israr, M.; El Sabagh, A. Potential effects of biochar application for improving wheat (Triticum aestivum L.) growth and soil biochemical properties under drought stress conditions. Land 2021, 10, 1125. [Google Scholar] [CrossRef]
- Shah, S.H.; Hussain, M.B.; Haider, G.; Haq, T.U.; Zahir, Z.A.; Danish, S.; Paray, B.A.; Kammann, C. Acidified manure and nitrogen-enriched biochar showed short-term agronomic benefits on cotton–wheat cropping systems under alkaline arid field conditions. Sci. Rep. 2023, 13, 22504. [Google Scholar] [CrossRef]
- Yi, Z.; Jeyakumar, P.; Yin, C.; Sun, H. Effects of biochar in combination with varied N inputs on grain yield, N uptake, NH3 volatilization, and N2O emission in paddy soil. Front. Microbiol. 2023, 14, 1174805. [Google Scholar] [CrossRef]
- Zhang, L.; Jing, Y.; Chen, C.; Xiang, Y.; Rezaei Rashti, M.; Li, Y.; Deng, Q.; Zhang, R. Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: A meta-analysis of field studies. GCB Bioenergy 2021, 13, 1859–1873. [Google Scholar] [CrossRef]
- Knoblauch, C.; Priyadarshani, S.H.R.; Haefele, S.M.; Schröder, N.; Pfeiffer, E.M. Impact of biochar on nutrient supply, crop yield and microbial respiration on sandy soils of northern Germany. Eur. J. Soil Sci. 2021, 72, 1885–1901. [Google Scholar] [CrossRef]
- Blum, A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res. 2009, 112, 119–123. [Google Scholar] [CrossRef]
- Kammann, C.I.; Schmidt, H.P.; Messerschmidt, N.; Linsel, S.; Steffens, D.; Müller, C.; Koyro, H.W.; Conte, P.; Stephen, J. Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep. 2015, 5, 11080. [Google Scholar] [CrossRef]
- Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zheng, J.; Zhang, X.; Han, X.; et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, G.; Wang, C.; Lu, H.; Li, S.; Xie, Y.; Ma, D.; Zhu, Y.; Guo, T. Effect of irrigation and nitrogen application on grain amino acid composition and protein quality in winter wheat. Prog. Nutr. 2008, 10, 203–209. [Google Scholar]
- Li, M.; Chen, C.; Zhang, H.; Wang, Z.; Song, N.; Li, J.; Liang, X.; Yi, K.; Gu, Y.; Guo, X. Effects of biochar amendment and organic fertilizer on microbial communities in the rhizosphere soil of wheat in Yellow River Delta saline-alkaline soil. Front. Microbiol. 2023, 14, 1250453. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Agbede, T.M.; Ejue, W.S.; Aboyeji, C.M.; Dunsin, O.; Aremu, C.O.; Owolabi, A.O.; Ajiboye, B.O.; Okunlola, O.F.; Adesola, O.O. Biochar, poultry manure and NPK fertilizer: Sole and combine application effects on soil properties and ginger (Zingiber officinale Roscoe) performance in a tropical Alfisol. Open Agric. 2020, 5, 30–39. [Google Scholar] [CrossRef]
- Shi, X.; Shi, W.; Dai, N.; Wang, M. Optimal Irrigation under the Constraint of Water Resources for Winter Wheat in the North China Plain. Agriculture 2022, 12, 2057. [Google Scholar] [CrossRef]
- Thapa, S.; Xue, Q.; Jessup, K.E.; Rudd, J.C.; Liu, S.; Marek, T.H.; Devkota, R.N.; Baker, J.A.; Baker, S. Yield determination in winter wheat under different water regimes. Field Crops Res. 2019, 233, 80–87. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, W.; Liu, X.; Wang, Q.; Liu, B.; Mei, X. Grain yield and water productivity of winter wheat controlled by irrigation regime and manure substitution in the North China Plain. Agric. Water Manag. 2024, 295, 108731. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, H.; Wang, L. Optimizing drip irrigation to enhance winter wheat performance: Yield, economic benefits, and water use efficiency. Int. J. Agric. Sustain. 2024, 22, 2437214. [Google Scholar] [CrossRef]
- Khan, Z.; Khan, M.N.; Zhang, K.; Luo, T.; Zhu, K.; Hu, L. The application of biochar alleviated the adverse effects of drought on the growth, physiology, yield and quality of rapeseed through regulation of soil status and nutrients availability. Ind. Crops Prod. 2021, 171, 113878. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.S.M.A.; Fujita, D.B.S.M.A.; Basra, S.M. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar]
- Yu, J.; Hou, P.; Gao, Q.; Tan, Q.; Jiang, D.; Dai, T.; Tian, Z. Optimizing nitrogen fertilizer and straw management promote root extension and nitrogen uptake to improve grain yield and nitrogen use efficiency of winter wheat (Triticum aestivum L.). Arch. Agron. Soil Sci. 2024, 70, 1–17. [Google Scholar] [CrossRef]
Treatments | Irrigation Regime (%) | Bokashi Rate (t ha−1) | Biochar Rate (t ha−1) | Irrigation (% Field Capacity) |
---|---|---|---|---|
Control (C) | IR60 | 0 | 0 | 60 |
IR50 | 0 | 0 | 50 | |
IR30 | 0 | 0 | 30 | |
Bokashi only (B0) | IR60 | 20 | 0 | 60 |
IR50 | 20 | 0 | 50 | |
IR30 | 20 | 0 | 30 | |
Bokashi + 1% biochar (B1) | IR60 | 20 | 20 | 60 |
IR50 | 20 | 20 | 50 | |
IR30 | 20 | 20 | 30 | |
Bokashi + 2% biochar (B2) | IR60 | 20 | 40 | 60 |
IR50 | 20 | 40 | 50 | |
IR30 | 20 | 40 | 30 |
Parameter | B | IR | B×IR | CV | Root MSE |
---|---|---|---|---|---|
GY | *** | *** | *** | 5.10 | 305 |
SY | *** | *** | *** | 4.22 | 452 |
GN | *** | *** | *** | 2.96 | 494 |
SN | *** | *** | *** | 2.51 | 0.06 |
GNU | *** | *** | *** | 21.23 | 0.10 |
SNU | *** | *** | *** | 6.98 | 10.37 |
TNU | *** | *** | *** | 26.03 | 13.84 |
NHI | *** | *** | *** | 7.80 | 15.74 |
GPC | ** | *** | *** | 4.94 | 3.63 |
AEN | *** | *** | *** | 2.51 | 0.34 |
AREN | *** | * | *** | 4.54 | 4.20 |
PEN | *** | *** | *** | 7.34 | 0.19 |
Treatments | Irrigation Regimes (%) | N Content (%) | N Uptake (kg ha−1) | (%) | |||
---|---|---|---|---|---|---|---|
Grain N | Straw N | GNU | SNU | NHI | GPC | ||
Control | IR60 | 1.53 ± 0 h | 0.46 ± 0 cd | 46.35 ± 0.06 g | 21 ± 0.09 cd | 68.82 ± 0.11 cde | 8.92 ± 0 h |
IR50 | 1.56 ± 0 h | 0.31 ± 0 d | 35.05 ± 0 g | 11.48 ± 0.05 d | 75.33 ± 0.08 bcd | 9.09 ± 0 h | |
IR30 | 1.77 ± 0 g | 0.28 ± 0 d | 27.45 ± 0.08 g | 8.34 ± 0.04 d | 76.7 ± 0.03 bc | 10.32 ± 0 g | |
Bokashi only | IR60 | 2.43 ± 0.09 d | 0.26 ± 0.08 d | 185.86 ± 6.66 cd | 32.17 ± 9.83 cd | 85.42 ± 3.43 ab | 14.14 ± 0.52 d |
IR50 | 2.24 ± 0.03 e | 0.42 ± 0.01 cd | 147.08 ± 1.89 e | 47.23 ± 0.67 bcd | 75.69 ± 0.47 bcd | 13.06 ± 0.18 e | |
IR30 | 2.07 ± 0.03 f | 0.5 ± 0.02 bcd | 86.69 ± 1.06 f | 45.09 ± 1.44 bcd | 65.79 ± 0.97 de | 12.05 ± 0.16 f | |
Bokashi + 1% biochar | IR60 | 2.89 ± 0.16 b | 0.22 ± 0.04 d | 288.45 ± 21.45 a | 35.41 ± 6.24 cd | 88.99 ± 2.44 a | 16.83 ± 0.95 b |
IR50 | 3.09 ± 0 a | 0.61 ± 0.16 abc | 254.09 ± 11.98 b | 78.69 ± 23.74 ab | 76.54 ± 6.21 bc | 17.99 ± 0 a | |
IR30 | 2.43 ± 0 d | 0.79 ± 0.02 ab | 163.01 ± 8.22 de | 110.71 ± 4.89 a | 59.54 ± 2.27 e | 14.17 ± 0 d | |
Bokashi + 2% biochar | IR60 | 2.37 ± 0.04 de | 0.42 ± 0.07 cd | 197.71 ± 7.93 c | 60.45 ± 9.04 bc | 76.6 ± 3.31 bc | 13.84 ± 0.21 de |
IR50 | 2.62 ± 0 c | 0.62 ± 0.18 abc | 184.05 ± 22.44 cd | 82.39 ± 24.4 ab | 69.35 ± 6.82 cde | 15.25 ± 0.03 c | |
IR30 | 2.74 ± 0.05 bc | 0.82 ± 0.23 a | 166.85 ± 1.99 de | 104.89 ± 29.92 a | 61.88 ± 6.13 e | 15.96 ± 0.31 bc | |
CV | 4.91 | 24 | 6.76 | 26.62 | 5.07 | 4.91 | |
LSD (p ≤ 0.05) | 0.19 | 0.19 | 16.79 | 23.67 | 6.23 | 1.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhakal, G.; Fujino, T.; Magar, S.T.; Araki, Y. Optimizing Nitrogen and Water Use Efficiency in Wheat Cropping Systems Through Integrated Application of Biochar and Bokashi Under Different Irrigation Regimes. Nitrogen 2025, 6, 21. https://doi.org/10.3390/nitrogen6020021
Dhakal G, Fujino T, Magar ST, Araki Y. Optimizing Nitrogen and Water Use Efficiency in Wheat Cropping Systems Through Integrated Application of Biochar and Bokashi Under Different Irrigation Regimes. Nitrogen. 2025; 6(2):21. https://doi.org/10.3390/nitrogen6020021
Chicago/Turabian StyleDhakal, Gyanendra, Takeshi Fujino, Srijana Thapa Magar, and Yuji Araki. 2025. "Optimizing Nitrogen and Water Use Efficiency in Wheat Cropping Systems Through Integrated Application of Biochar and Bokashi Under Different Irrigation Regimes" Nitrogen 6, no. 2: 21. https://doi.org/10.3390/nitrogen6020021
APA StyleDhakal, G., Fujino, T., Magar, S. T., & Araki, Y. (2025). Optimizing Nitrogen and Water Use Efficiency in Wheat Cropping Systems Through Integrated Application of Biochar and Bokashi Under Different Irrigation Regimes. Nitrogen, 6(2), 21. https://doi.org/10.3390/nitrogen6020021