Interaction of Nitrogen, Phosphorus, and Potassium Fertilisation and Precipitation on the Nitrogen Use Efficiency of Rainfed Grass
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Biomass
3.2. N Balance
3.3. FNRE—Fertiliser-N Recovery Efficiency
3.4. AE—Agronomic Efficiency
3.5. IE—Internal Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smil, V. Nitrogen in crop production: An account of global flows. Global Biogeochem. Cycles 1999, 13, 647–662. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO A J. Hum. Environ. 2002, 31, 132–140. [Google Scholar] [CrossRef]
- Martínez-Dalmau, J.; Berbel, J.; Ordóñez-Fernández, R. Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses. Sustainability 2021, 13, 5625. [Google Scholar] [CrossRef]
- Brender, J.D. Human Health Effects of Exposure to Nitrate, Nitrite, and Nitrogen Dioxide. In Just Enough Nitrogen; Sutton, M.A., Mason, K.E., Bleeker, A., Hicks, W.K., Masso, C., Raghuram, N., Reis, S., Bekunda, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 283–294. [Google Scholar] [CrossRef]
- Pirkó, B.; Koós, S.; Szabó, J.; Radimszky, L.; Csathó, P.; Árendás, T.; Fodor, N.; Szabó, A. Results of Hungarian field test trials set up for establishing new maximum permitted N dose values. Stud. Agric. Econ. 2020, 122, 77–85. [Google Scholar] [CrossRef]
- Kovács, A.B.; Vágó, I.; Kremper, R. Growth and yield responses of garden bean (Phaseolus vulgaris L.) to nitrogen and sulphur fertilization. Analele Universităţii din Oradea, Fascicula Protecţia Mediului 2008, 13, 93–111. Available online: https://protmed.uoradea.ro/facultate/anale/protectia_mediului/2008/agr/Kovacs.pdf (accessed on 28 September 2023).
- Koós, S.; Pirkó, B.; Szatmári, G.; Csathó, P.; Magyar, M.; Szabó, J.; Fodor, N.; Pásztor, L.; Laborczi, A.; Pokovai, K.; et al. Influence of the Shortening of the Winter Fertilization Prohibition Period in Hungary Assessed by Spatial Crop Simulation Analysis. Sustainability 2021, 13, 417. [Google Scholar] [CrossRef]
- Chapin, F.S. The Mineral Nutrition of Wild Plants. Annu. Rev. Ecol. Syst. 1980, 11, 233–260. [Google Scholar] [CrossRef]
- Berendse, F.; Aerts, R. Nitrogen-use-efficiency: A biologically meaningful definition? Funct. Ecol. 1987, 1, 293–296. [Google Scholar]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen Use Efficiency Definitions of Today and Tomorrow. Front. Plant Sci. 2021, 12, 637108. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Feria, R.A.; Castellano, M.J.; Dietzel, R.N.; Helmers, M.J.; Liebman, M.; Huber, I.; Archontoulis, S.V. Linking crop- and soil-based approaches to evaluate system nitrogen-use efficiency and trade offs. Agric. Ecosyst. Environ. 2018, 256, 131–143. [Google Scholar] [CrossRef]
- Gregg, S.; Gesch, R.W.; Garcia y Garcia, A. Nitrogen Uptake and Use Efficiency in Winter Camelina with Applied N. Nitrogen 2024, 5, 509–517. [Google Scholar] [CrossRef]
- Conant, R.T.; Berdanier, A.B.; Grace, P.R. Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture. Glob. Biogeochem. Cycles 2013, 27, 558–566. [Google Scholar] [CrossRef]
- Barłóg, P. Improving Fertilizer Use Efficiency—Methods and Strategies for the Future. Plants 2023, 12, 3658. [Google Scholar] [CrossRef]
- Mastalerczuk, G.; Borawska-Jarmułowicz, B.; Dąbrowski, P.; Szara, E.; Perzanowska, A.; Wróbel, B. Can the Application the Silicon Improve the Productivity and Nutritional Value of Grass–Clover Sward in Conditions of Rainfall Shortage in Organic Management? Agronomy 2020, 10, 1007. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.K. A Review of Methods to Improve Nitrogen Use Efficiency in Agriculture. Sustainability 2018, 10, 51. [Google Scholar] [CrossRef]
- Wang, Y.; Ying, H.; Yin, Y.; Zheng, H.; Cui, Z. Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis. Sci. Tot. Environ. 2019, 657, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Lassaletta, L.; Billen, G.; Garnier, J.; Bouwman, L.; Velazquez, E.; Mueller, N.D.; Gerber, J.S. Nitrogen use in the global food system: Past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ. Res. Lett. 2016, 11, 095007. [Google Scholar] [CrossRef]
- Koós, S.; Németh, T. Seasonal Dynamics of Mineral Nitrogen in the 10th and 30th years of a Long-Term Field Experiment in Hungary. Commun Soil Sci. Plant Anal. 2006, 37, 2899–2910. [Google Scholar] [CrossRef]
- Ragályi, P.; Kádár, I.; Csontos, P. Effect of precipitation on the yield of hay meadows with contrasting nutrient supply. Bulg. J. Agric. Sci. 2014, 20, 779–785. [Google Scholar]
- ISO 10390:2021; Soil, Treated Biowaste and Sludge—Determination of pH. International Organization for Standardization: Geneva, Switzerland, 2021. Available online: https://www.iso.org/standard/75243.html (accessed on 5 November 2022).
- ISO 11261:1995; Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 1995. Available online: https://www.iso.org/standard/19239.html (accessed on 22 September 2023).
- Bremner, J.M.; Keeney, D.R. Determination and Isotope-Ratio Analysis of Different Forms of Nitrogen in Soils: 3. Exchangeable Ammonium, Nitrate, and Nitrite by Extraction-Distillation Methods. Soil Sci. Soc. Am. J. 1966, 30, 577–582. [Google Scholar] [CrossRef]
- FAO. Standard Operating Procedure for Soil Organic Carbon, Walkley-Black Method, Titration and Colorimetric Method; FAO: Rome, Italy, 2020; Available online: https://www.fao.org/3/ca7471en/ca7471en.pdf (accessed on 22 March 2023).
- ISO 13536:1995; Soil Quality—Determination of the Potential Cation Exchange Capacity and Exchangeable Cations Using Barium Chloride Solution Buffered at pH = 8.1. International Organization for Standardization: Geneva, Switzerland, 1995. Available online: https://www.iso.org/standard/22180.html (accessed on 22 September 2023).
- ISO 10693:1997; Soil Quality—Determination of Carbonate Content—Volumetric Method. International Organization for Standardization: Geneva, Switzerland, 1997. Available online: https://www.iso.org/standard/18781.html (accessed on 22 September 2023).
- Egnér, H.; Riehm, H.; Domingo, W.R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extrationsmethoden zur Phosphur- und Kaliumbestimmung. K. Lantbr. Högsk. Ann. 1960, 26, 199–215. [Google Scholar]
- ISO 1871:2009; Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 2009. Available online: https://www.iso.org/standard/41320.html (accessed on 22 September 2023).
- Dobermann, A. Nutrient use efficiency−measurement and management. In Fertilizer Best Management Practices: General Principles, Strategy for Their Adoption and Voluntary Initiatives vs. Regulations; International Fertilizer Industry Association: Paris, France, 2007; pp. 1–28. [Google Scholar]
- Ragályi, P.; Szabó, A.; Rékási, M.; Csathó, P.; Csontos, P. Effect of Different Macronutrient Supply Levels on the Drought Tolerance of Rainfed Grass Based on Biomass Production, Water Use Efficiency and Macro element Content. Horticulturae 2023, 9, 1337. [Google Scholar] [CrossRef]
- Khalilzadeh, J.; Tasci, A.D.A. Large sample size, significance level, and the effect size: Solutions to perils of using big data for academic research. Tour. Manag. 2017, 62, 89–96. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 20 September 2024).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. Available online: https://ggplot2.tidyverse.org (accessed on 22 June 2021).
- Kádár, I.; Ragályi, P. Mineral fertilization and grass productivity in a long-term field experiment. Arch. Agron. Soil Sci. 2012, 58, 127–131. [Google Scholar] [CrossRef]
- Juhász, E.K.; Kremper, R.; Béni, Á.; Balláné Kovács, A. Residual effect of superphosphate on the sulphur status of soil and plants in a long-term NPK fertilisation experiment on a Chernozem in Hungary. Plant Soil Environ. 2021, 67, 625–632. [Google Scholar] [CrossRef]
- Tasi, J.; Bajnok, M.; Szentes, S.; Penksza, K. The distribution of precipitation as a stress coefficient on harvest amounts of different grasslands. Cereal Res. Commun. 2009, 37, 109–112. [Google Scholar]
- Sinclair, T.R.; Rufty, T.W. Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Glob. Food Secur. 2012, 1, 94–98. [Google Scholar] [CrossRef]
- Wang, S.; Peng, J.; Dong, W.; Wei, Z.; Zafar, S.u.; Jin, T.; Liu, E. Optimizing Irrigation and Nitrogen Fertilizer Regimes to Increase the Yield and Nitrogen Utilization of Tibetan Barley in Tibet. Agronomy 2024, 14, 1775. [Google Scholar] [CrossRef]
- McLellan, E.L.; Cassman, K.G.; Eagle, A.J.; Woodbury, P.B.; Sela, S.; Tonitto, C.; Marjerison, R.D.; van Es, H.M. The Nitrogen Balancing Act: Tracking the Environmental Performance of Food Production. BioScience 2018, 68, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhang, Y.; Wang, Y.; Wang, L.; Bai, Y.; Lu, Y. Optimizing nitrogen input and nitrogen use efficiency through soil nitrogen balance in a long-term winter wheat-summer maize rotation system in North China. Eur. J. Agron. 2023, 149, 126908. [Google Scholar] [CrossRef]
- Lv, M.; Huang, M.; Zhao, K.; Gu, X.; Li, S.; Wang, J.; Yin, F.; Liu, L.; Jiao, N.; Fu, G. Effects of Partial Substitution of Organic Fertilizer for Synthetic N Fertilizer on Yield and N Use Efficiencies in a Semiarid Winter Wheat–Summer Maize Rotation. Agronomy 2023, 13, 2281. [Google Scholar] [CrossRef]
- Jarrell, W.M.; Beverly, R.B. The Dilution Effect in Plant Nutrition Studies. Adv. Agron. 1981, 34, 197–224. [Google Scholar] [CrossRef]
- Francisquini, J.A.; Calonego, J.C.; Rosolem, C.A.; dos Santos, C.H.; Tiritan, C.S. Increase of nitrogen-use efficiency by phosphorus fertilization in grass–legume pastures. Nutr. Cycl. Agroecosyst. 2020, 118, 165–175. [Google Scholar] [CrossRef]
- Egan, G.; McKenzie, P.; Crawley, M.; Fornara, D.A. Effects of grassland management on plant nitrogen use efficiency (NUE): Evidence from a long-term experiment. Basic Appl. Ecol. 2019, 41, 33–43. [Google Scholar] [CrossRef]
- Duan, Y.; Xu, M.; Gao, S.; Yang, X.; Huang, S.; Liu, H.; Wang, B. Nitrogen use efficiency in a wheat–corn cropping system from 15 years of manure and fertilizer applications. Field Crops Res. 2014, 157, 47–56. [Google Scholar] [CrossRef]
- Geng, J.; Yang, X.; Lei, S.; Zhang, Q.; Li, H.; Lang, Y.; Huo, X.; Liu, Q. Combining controlled-release urea with potassium chloride to reduce soil N/K leaching and promote growth of Italian ryegrass. Sci. Rep. 2023, 13, 326. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Sun, P.; Waring, B.G. Nitrogen agronomic efficiency under nitrogen fertilization does not change over time in the long term: Evidence from 477 global studies. Soil Till. Res. 2022, 223, 105468. [Google Scholar] [CrossRef]
- Duncan, E.G.; O’Sullivan, C.A.; Roper, M.M.; Palta, J.; Whisson, K.; Peoples, M.B. Yield and nitrogen use efficiency of wheat increased with root length and biomass due to nitrogen, phosphorus, and potassium interactions. J. Plant Nutr. Soil Sci. 2018, 181, 364–373. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, J.; Zhong, M.; Chen, L.; Zhang, W. Effects of Phosphorus and Potassium Supply on Photosynthetic Nitrogen Metabolism, Nitrogen Absorption, and Nitrogen Utilization of Hydroponic Rice. Agronomy 2024, 14, 1726. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Li, J.; Huang, D. The Utilization and Roles of Nitrogen in Plants. Forests 2024, 15, 1191. [Google Scholar] [CrossRef]
- Ragályi, P.; Kádár, I.; Szemán, L.; Csathó, P.; Csontos, P. Effect of N, P and K fertilization on the species succession of an established grass sward during a decade. Bot. Közlemények 2018, 105, 13–26. [Google Scholar] [CrossRef]
- Muhandiram, N.P.K.; Humphreys, M.W.; Fychan, R.; Davies, J.W.; Scott, M.B.; Harper, J.; Thomas, A.; Powell, H.; Sanderson, R.; Marley, C.L. Scoping Opportunities for Nitrogen Use Efficiency Among Productive Agricultural Forage Grasses with Diverse Rooting Systems. Food Energy Secur. 2024, 13, e70023. [Google Scholar] [CrossRef]
- Bastidas, M.; Vázquez, E.; Villegas, D.M.; Rao, I.M.; Gutierrez, J.F.; Vivas-Quila, N.J.; Amado, M.; Berdugo, C.; Arango, J. Optimizing nitrogen use efficiency of six forage grasses to reduce nitrogen loss from intensification of tropical pastures. Agric. Ecosyst. Environ. 2024, 367, 108970. [Google Scholar] [CrossRef]
N, P and K Treatment Levels | 0 | 1 | 2 | 3 | |
---|---|---|---|---|---|
Treatments | N kg ha−1 year−1 | 0 | 100 | 200 | 300 |
P2O5 kg ha−1 in 1999 | 0 | 500 | 1000 | 1500 | |
K2O kg ha−1 in 1999 | 0 | 500 | 1000 | 1500 | |
Nutrient | AL-P2O5 mg kg−1 in 2000 | 66 | 153 | 333 | 542 |
concentration in soil | AL-K2O mg kg−1 in 2000 | 135 | 193 | 279 | 390 |
Source of Variation | Biomass | N Balance | FNRE | AE | IE |
---|---|---|---|---|---|
N | *** | *** | *** | *** | *** |
P | *** | *** | *** | *** | ** |
K | *** | ** | n.s. | *** | n.s. |
Rainfall | * | * | * | * | * |
N:P | ** | *** | n.s. | n.s. | n.s. |
N:K | * | ** | * | n.s. | n.s. |
P:K | n.s. | n.s. | n.s. | *** | n.s. |
N:Rainfall | *** | *** | * | *** | *** |
P:Rainfall | * | ** | *** | n.s. | n.s. |
K:Rainfall | n.s. | n.s. | n.s. | n.s. | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragályi, P.; Szabó, A.; Csathó, P.; Rékási, M.; Csontos, P. Interaction of Nitrogen, Phosphorus, and Potassium Fertilisation and Precipitation on the Nitrogen Use Efficiency of Rainfed Grass. Nitrogen 2025, 6, 8. https://doi.org/10.3390/nitrogen6010008
Ragályi P, Szabó A, Csathó P, Rékási M, Csontos P. Interaction of Nitrogen, Phosphorus, and Potassium Fertilisation and Precipitation on the Nitrogen Use Efficiency of Rainfed Grass. Nitrogen. 2025; 6(1):8. https://doi.org/10.3390/nitrogen6010008
Chicago/Turabian StyleRagályi, Péter, Anita Szabó, Péter Csathó, Márk Rékási, and Péter Csontos. 2025. "Interaction of Nitrogen, Phosphorus, and Potassium Fertilisation and Precipitation on the Nitrogen Use Efficiency of Rainfed Grass" Nitrogen 6, no. 1: 8. https://doi.org/10.3390/nitrogen6010008
APA StyleRagályi, P., Szabó, A., Csathó, P., Rékási, M., & Csontos, P. (2025). Interaction of Nitrogen, Phosphorus, and Potassium Fertilisation and Precipitation on the Nitrogen Use Efficiency of Rainfed Grass. Nitrogen, 6(1), 8. https://doi.org/10.3390/nitrogen6010008