Hemp (Cannabis salvia L.) Cultivation: Chemical Fertilizers or Organic Technologies, a Comprehensive Review
Abstract
:1. Introduction
2. Methodology
3. Biochemistry of Hemp
4. Hemp Agronomy
4.1. Hemp in Crop Rotations
4.2. Seed Bed Preparation and Sowing
4.3. Factors Influencing Growth, Development, and Yield of Hemp
4.4. Water Deficit Stress
4.5. Heat Stress
4.6. Salinity Stress
5. Growth Conditions for the Cultivation of Hemp
6. Fertilization of Hemp
7. Chemical Fertilizers
7.1. Sources of Chemical Fertilizers Used for Hemp Production
7.2. Effect of Nitrogen (N)
Fertilizer Type | Parameter | Growing Conditions | Impact of N Application | Growing Media | References |
---|---|---|---|---|---|
Ammonium nitrate (surface broadcast) | Plant height, seed yield, seed protein content, biomass | Field | Increase | Silty loam-type soil | [126] |
Liquid N by fertigation (80% N–NO3−, 20% N–NH4+) | Photosynthetic pigments, osmotic potential, total N and N–NO3, water use efficiency | Growth chamber | Increase | Soilless, perlite 2-1-2 cultivation media | [127] |
Liquid N by fertigation (80% N–NO3−, 20% N–NH4+) | Nitrogen use efficiency; Ca, Mn, and Zn uptake | Growth chamber | Decrease | Soilless, perlite | [127] |
Urea (46% N) | Fiber yield | Field | Increase | NR | [128] |
Liquid N–NO3− | Chlorophyll, malondialdehyde, N accumulation in the plant, soluble protein | Greenhouse | Increase | Peat | [129] |
Liquid N–NO3− | Stem mass density, root/shoot ratio | Greenhouse | Decrease | Peat | [129] |
Liquid N–NO3− | Antioxidant enzymes (superoxide dismutase and peroxidase) | Greenhouse | First, increase then decrease after 6.0 mmol N L−1 | Peat | [129] |
Urea | Lead accumulation in leaves | Greenhouse | Increase | Soil spiked with lead in pots | [128] |
Calcium ammonium nitrate | Seed crude protein content | Field | Increase | Loam to sandy | [130] |
Calcium ammonium nitrate | Biomass cellulose and hemicellulose | Field | Nonsignificant increase | Loam to sandy | [118] |
Ammonium phosphate | Sex ratio | Field | Not affected | NR | [131] |
Peters Professional 20-20-20 (N-P-K) | CBD, CBG yield (g plant−1) | Growth chamber | Decrease after 50 mg L−1 N | Pro-mix HP mycorrhizae | [132] |
7.3. Effect of Phosphorus (P)
Property | P Effect | Explanation | Recommended Dosage (kg P2O5/ha) | Reference |
---|---|---|---|---|
Root development | Enhancement | Enhanced root systems support better water and nutrient uptake. | 20–50 | [142] |
Energy storage and transfer | Increased efficiency | Phosphorus plays a key role in the process of energy transfer within plants, helping convert nutrients into usable energy. | 20–50 | [143] |
Flowering and seed production | Potential improvement | Adequate phosphorus can improve the quality and quantity of flowering, subsequently affecting seed production. | 50–100 | [133] |
Disease resistance | Improved resistance | Phosphorus can help enhance the plant’s resistance to various diseases, particularly root rot and other soil-borne pathogens. | 20–50 | [138] |
Overall plant health | Overall improvement | Sufficient phosphorus contributes to the general health and vigor of the plant, potentially leading to higher yields. | 20–50 | [140] |
Nutrient uptake efficiency | Improvement | Phosphorus improves the plant’s ability to uptake other essential nutrients from the soil, particularly micronutrients. | 20–50 | [141] |
Stress tolerance | Increased tolerance | Phosphorus can enhance the plant’s ability to withstand abiotic stresses such as drought and salinity. | 20–50 | [144] |
Photosynthetic efficiency | Enhancement | Phosphorus is involved in the synthesis of ATP during photosynthesis, which may increase the overall efficiency of this process. | 20–50 | [145] |
7.4. Effect of Potassium (K)
Property | K Effect | K Rate Application (kg K2O/ha) | Time of Application | Growing Culture Media | Reference |
---|---|---|---|---|---|
Stem strength | Enhancement | 80–120 | Pre-planting | Soil-based | [152] |
Disease resistance | Improvement | 80–120 | At planting | Soil-based | [147] |
Water efficiency | Increases | 80–120 | Pre-planting | Soil-based | [153] |
Nutrient uptake | Improvement | 80–120 | At planting and mid-season | Soil and hydroponic | [154] |
Yield and quality | Increase | 100–150 | Split application at planting and flowering | Soil-based and hydroponic | [155] |
Photosynthesis | Improvement | 80–120 | At planting | Soil-based | [151] |
Root development | Enhancement | 80–120 | Pre-planting | Soil-based | [148] |
Stress tolerance | Increases | 80–120 | Pre-planting | Soil-based | [149] |
Fiber quality | Improvement | 80–120 | Pre-planting | Soil-based | [149] |
Seed oil content | Enhancement | 100–150 | At planting and mid-season | Soil-based | [151] |
7.5. N, P, K Timing Application for Hemp
7.6. Effect of Other Nutrients
7.7. Organic Fertilizers
Optimal Rate of Organic Fertilizer during the Flowering Stage for Hemp
7.8. Organic Cultivation Technologies
8. Economic Issues and Perspectives for Industrial Hemp
9. Chemical and Organic Fertilizer Effect on Implications for Global Hemp and Economic Issues
10. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cerino, P.; Buonerba, C.; Cannazza, G.; D’Auria, J.; Ottoni, E.; Fulgione, A.; Gallo, A. A review of hemp as food and nutritional supplement. Cannabis Cannabinoid Res. 2021, 6, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Connor, J.P.; Stjepanović, D.; Le Foll, B.; Hoch, E.; Budney, A.J.; Hall, W.D. Cannabis use and cannabis use disorder. Nat. Rev. Dis. Primers 2021, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Crocq, M.A. History of cannabis and the endocannabinoid system. Dialogues Clin. Neurosci 2020, 22, 223–228. [Google Scholar] [CrossRef] [PubMed]
- ElSohly, M.A.; Chandra, S.; Radwan, M.; Majumdar, C.G.; Church, J.C. A comprehensive review of cannabis potency in the United States in the last decade. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Fordjour, E.; Manful, C.F.; Sey, A.A.; Javed, R.; Pham, T.H.; Thomas, R.; Cheema, M. Cannabis: A multifaceted plant with endless potentials. Front. Pharmacol 2024, 14, 1200269. [Google Scholar] [CrossRef] [PubMed]
- Levinsohn, E.A.; Hill, K.P. Clinical uses of cannabis and cannabinoids in the United States. J. Neurol. Sci. 2020, 411, 116717. [Google Scholar] [CrossRef] [PubMed]
- Crini, G.; Lichtfouse, E.; Chanet, G.; Morin-Crini, N. Traditional and new applications of hemp. In Sustainable Agriculture Reviews 42: Hemp Production and Applications; Springer: Cham, Switzerland, 2020; pp. 37–87. [Google Scholar]
- Ahmed, A.F.; Islam, M.Z.; Mahmud, M.S.; Sarker, M.E.; Islam, M.R. Hemp as a potential raw material toward a sustainable world: A review. Heliyon 2022, 8, e08753. [Google Scholar] [CrossRef]
- Visković, J.; Zheljazkov, V.D.; Sikora, V.; Noller, J.; Latković, D.; Ocamb, C.M.; Koren, A. Industrial hemp (Cannabis sativa L.) agronomy and utilization: A review. Agronomy 2023, 13, 931. [Google Scholar] [CrossRef]
- Ellison, S. Hemp (Cannabis sativa L.) research priorities: Opinions from United States hemp stakeholders. GCB Bioenergy 2021, 13, 562–569. [Google Scholar] [CrossRef]
- Rizzo, G.; Storz, M.A.; Calapai, G. The role of hemp (Cannabis sativa L.) as a functional food in vegetarian nutrition. Foods 2023, 12, 3505. [Google Scholar] [CrossRef]
- Rehman, M.; Fahad, S.; Du, G.; Cheng, X.; Yang, Y.; Tang, K.; Deng, G. Evaluation of hemp (Cannabis sativa L.) as an industrial crop: A review. Environ. Sci. Pollut. Res. 2021, 28, 52832–52843. [Google Scholar] [CrossRef] [PubMed]
- Toth, J.A.; Smart, L.B.; Smart, C.D.; Stack, G.M.; Carlson, C.H.; Philippe, G.; Rose, J.K. Limited effect of environmental stress on cannabinoid profiles in high-cannabidiol hemp (Cannabis sativa L.). GCB Bioenergy 2021, 13, 1666–1674. [Google Scholar] [CrossRef]
- Babiker, E.E.; Uslu, N.; Al Juhaimi, F.; Ahmed, I.A.M.; Ghafoor, K.; Özcan, M.M.; Almusallam, I.A. Effect of roasting on antioxidative properties, polyphenol profile and fatty acids composition of hemp (Cannabis sativa L.) seeds. LWT 2021, 139, 110537. [Google Scholar] [CrossRef]
- Sorrentino, G. Introduction to emerging industrial applications of cannabis (Cannabis sativa L.). Rendiconti Lincei Sci. Fis. e Nat. 2021, 32, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Crini, G.; Lichtfouse, E.; Chanet, G.; Morin-Crini, N. Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: A review. Environ. Chem. Let. 2020, 18, 1451–1476. [Google Scholar] [CrossRef]
- Fike, J.H.; Darby, H.; Johnson, B.L.; Smart, L.; Williams, D.W. Industrial hemp in the USA: A brief synopsis. Sustainable agriculture reviews. Hemp Prod. Apply 2020, 42, 89–109. [Google Scholar]
- Xu, J.; Bai, M.; Song, H.; Yang, L.; Zhu, D.; Liu, H. Hemp (Cannabis sativa subsp. sativa) Chemical composition and the application of hempseeds in food formulations. Plant Food Hum. Nut. 2022, 77, 504–513. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, X.; Guo, Y.; Qiu, C.; Long, S.; Wang, Y.; Qiu, H. Industrial hemp—An old but versatile bast fiber crop. J. Nat. Fibers 2022, 19, 6269–6282. [Google Scholar] [CrossRef]
- Dos Santos, R.G.; Guimaraes, F.S.; Crippa, J.A.S.; Hallak, J.E.; Rossi, G.N.; Rocha, J.M.; Zuardi, A.W. Serious adverse effects of cannabidiol (CBD): A review of randomized controlled trials. Expert Opin. Drug Metab. Toxicol. 2020, 16, 517–526. [Google Scholar] [CrossRef]
- Mazzara, E.; Torresi, J.; Fico, G.; Papini, A.; Kulbaka, N.; Dall’Acqua, S.; Petrelli, R. A comprehensive phytochemical analysis of terpenes, polyphenols and cannabinoids, and micromorphological characterization of 9 commercial varieties of Cannabis sativa L. Plants 2022, 11, 891. [Google Scholar] [CrossRef]
- Pellati, F.; Brighenti, V.; Sperlea, J.; Marchetti, L.; Bertelli, D.; Benvenuti, S. New methods for the comprehensive analysis of bioactive compounds in Cannabis sativa L.(hemp). Molecules 2018, 23, 2639. [Google Scholar] [CrossRef]
- Pavlovic, R.; Panseri, S.; Giupponi, L.; Leoni, V.; Citti, C.; Cattaneo, C.; Giorgi, A. Phytochemical and ecological analysis of two varieties of hemp (Cannabis sativa L.) grown in a mountain environment of Italian Alps. Front. Plant Sci. 2019, 10, 1265. [Google Scholar] [CrossRef]
- Tzimas, P.S.; Beteinakis, S.; Petrakis, E.A.; Papastylianou, P.T.; Kakabouki, I.; Small-Howard, A.L.; Halabalaki, M. Uncovering the metabolite complexity and variability of cultivated hemp (Cannabis sativa L.): A first phytochemical diversity mapping in Greece. Phytochemistry 2024, 222, 114076. [Google Scholar] [CrossRef] [PubMed]
- Di Sotto, A.; Gullì, M.; Acquaviva, A.; Tacchini, M.; Di Simone, S.C.; Chiavaroli, A.; Ferrante, C. Phytochemical and pharmacological profiles of the essential oil from the inflorescences of the Cannabis sativa L. Ind. Crops Prod. 2022, 183, 114980. [Google Scholar] [CrossRef]
- Judžentienė, A.; Garjonytė, R.; Būdienė, J. Phytochemical composition and antioxidant activity of various extracts of fibre hemp (Cannabis sativa L.) cultivated in lithuania. Molecules 2023, 28, 4928. [Google Scholar] [CrossRef]
- Al Ubeed, H.M.S.; Bhuyan, D.J.; Alsherbiny, M.A.; Basu, A.; Vuong, Q.V. A comprehensive review on the techniques for extraction of bioactive compounds from medicinal cannabis. Molecules 2022, 27, 604. [Google Scholar] [CrossRef] [PubMed]
- AL Ubeed, H.M.; Brennan, C.S.; Schanknecht, E.; Alsherbiny, M.A.; Saifullah, M.; Nguyen, K.; Vuong, Q.V. Potential applications of hemp (Cannabis sativa L.) extracts and their phytochemicals as functional ingredients in food and medicinal supplements: A narrative review. Int. J. Food Sci. Technol. 2022, 57, 7542–7555. [Google Scholar] [CrossRef]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The seed of industrial hemp (Cannabis sativa L.): Nutritional quality and potential functionality for human health and nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef]
- Siano, F.; Moccia, S.; Picariello, G.; Russo, G.L.; Sorrentino, G.; Di Stasio, M.; Volpe, M.G. Comparative study of chemical, biochemical characteristic and ATR-FTIR analysis of seeds, oil and flour of the edible Fedora cultivar hemp (Cannabis sativa L.). Molecules 2018, 24, 83. [Google Scholar] [CrossRef]
- Banskota, A.H.; Tibbetts, S.M.; Jones, A.; Stefanova, R.; Behnke, J. Biochemical characterization and in vitro digestibility of protein isolates from hemp (Cannabis sativa L.) by-products for salmonid feed applications. Molecules 2022, 27, 4794. [Google Scholar] [CrossRef]
- Cattaneo, C.; Givonetti, A.; Leoni, V.; Guerrieri, N.; Manfredi, M.; Giorgi, A.; Cavaletto, M. Biochemical aspects of seeds from Cannabis sativa L. plants grown in a mountain environment. Sci. Rep. 2021, 11, 3927. [Google Scholar] [CrossRef] [PubMed]
- Keiller, B.G.; Potter, M.; Burton, R.A.; van Eyk, P.J. Elucidating the degradation reaction pathways for the hydrothermal carbonisation of hemp via biochemical compositional analysis. Fuel 2021, 294, 120450. [Google Scholar] [CrossRef]
- Woods, P.; Campbell, B.J.; Nicodemus, T.J.; Cahoon, E.B.; Mullen, J.L.; McKay, J.K. Quantitative trait loci controlling agronomic and biochemical traits in Cannabis sativa. Genetics 2021, 219, iyab099. [Google Scholar] [CrossRef] [PubMed]
- Taura, F.; Tanaya, R.; Sirikantaramas, S. Recent advances in cannabinoid biochemistry and biotechnology. Sci. Asia 2019, 45, 399–407. [Google Scholar] [CrossRef]
- Merenkova, S.; Fatkullin, R.; Kalinina, I. Effect of fermentation on the biochemical parameters antioxidant capacity and dispersed composition of plant beverages based on barley and hemp seeds. Fermentation 2022, 8, 384. [Google Scholar] [CrossRef]
- Deguchi, M.; Kane, S.; Potlakayala, S.; George, H.; Proano, R.; Sheri, V.; Rudrabhatla, S. Metabolic engineering strategies of industrial hemp (Cannabis sativa L.): A brief review of the advances and challenges. Front. Plant Sci. 2020, 11, 580621. [Google Scholar] [CrossRef] [PubMed]
- Karche, T. The application of hemp (Cannabis sativa L.) for a green economy: A review. Turk. J. Bot. 2019, 43, 710–723. [Google Scholar] [CrossRef]
- Boleti, A.P.D.A.; Frihling, B.E.F.; e Silva, P.S.; Cardoso, P.H.D.O.; de Moraes, L.F.R.; Rodrigues, T.A.A.; Migliolo, L. Biochemical aspects and therapeutic mechanisms of cannabidiol in epilepsy. Neurosci. Biobehav. Rev. 2022, 132, 1214–1228. [Google Scholar] [CrossRef] [PubMed]
- Folina, A.; Kakabouki, I.; Tourkochoriti, E.; Roussis, I.; Pateroulakis, H.; Bilalis, D. Evaluation of the effect of topping on cannabidiol (CBD) content in two industrial hemp (Cannabis sativa L.) cultivars. Bull. Hortic. 2020, 3, 54–63. [Google Scholar] [CrossRef]
- House, J.D.; Neufeld, J.; Leson, G. Evaluating the quality of protein from hemp seed (Cannabis sativa L.) products through the use of the protein digestibility-corrected amino acid score method. J. Agric. Food Chem. 2010, 58, 11801–11807. [Google Scholar] [CrossRef]
- Da Cunha Leme Filho, J.F.; Thomason, W.E.; Evanylo, G.K.; Zhang, X.; Strickland, M.S.; Chim, B.K.; Diatta, A.A. Biochemical and physiological responses of Cannabis sativa to an integrated plant nutrition system. Agron. J. 2020, 112, 5237–5248. [Google Scholar] [CrossRef]
- Borroto Fernandez, E.; Peterseil, V.; Hackl, G.; Menges, S.; de Meijer, E.; Staginnus, C. Distribution of chemical phenotypes (chemotypes) in European agricultural hemp (Cannabis sativa L.) cultivars. J. Forensic Sci. 2020, 65, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.N.; Shahbazi, F.; Rondeau-Gagné, S.; Trant, J.F. The biosynthesis of the cannabinoids. J. Cannabis Res. 2021, 3, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kostuik, J.; Williams, D.W. Hemp agronomy–Grain and Fiber Production. In Industrial Hemp as a Modern Commodity Crop; Fike, J., Riddle, T., Nelson, J., Flaherty, P., Williams, D.W., Eds.; American Society of Agronomy, Crop Science Society: Madison, WI, USA, 2019; pp. 59–72. [Google Scholar]
- Van der Werf, H.M.G.; van Geel, W.C.A.; Wijlhuizen, M. Agronomic research on hemp (Cannabis sativa L.) in the Netherlands, 1987–1993. J. Int. Hemp Assoc. 1995, 2, 14–17. [Google Scholar]
- Kok, C.J.; Coenen, G.C.M.; de Heij, A. The effect of fibre hemp (Cannabis sativa L.) on selected soil-borne pathogens. J. Int. Hemp Assoc. 1994, 1, 6–9. [Google Scholar]
- Adesina, I.; Bhowmik, A.; Sharma, H.; Shahbazi, A. A review on the current state of knowledge of growing conditions, agronomic soil health practices and utilities of hemp in the United States. Agriculture 2020, 10, 129. [Google Scholar] [CrossRef]
- Amaducci, S.; Scordia, D.; Liu, F.H.; Zhang, Q.; Guo, H.; Testa, G.; Cosentino, S.L. Key cultivation techniques for hemp in Europe and China. Ind. Crops Prod. 2015, 68, 2–16. [Google Scholar] [CrossRef]
- Desanlis, F.; Cerruti, N.; Warner, P. Hemp agronomics and cultivation. In Hemp: Industrial Production and Uses; Bouloc, P., Allegret, S., Arnaud, L., Eds.; CAB International: Wallingford, UK; Boston, MA, USA, 2013; pp. 98–124. [Google Scholar]
- Kaiser, C.; Cassady, C.; Ernst, M. Industrial hemp production. Cent. Crop. Diversif. Univ. Ky 2015, 27, 101–106. [Google Scholar]
- Liu, M.; Ale, M.T.; Kołaczkowski, B.; Fernando, D.; Daniel, G.; Meyer, A.S.; Thygesen, A. Comparison of traditional field retting and Phlebia radiata Cel 26 retting of hemp fibres for fibre-reinforced composites. AMB Express 2017, 7, 58. [Google Scholar] [CrossRef]
- Krüger, M.; van Eeden, T.; Beswa, D. Cannabis sativa Cannabinoids as Functional Ingredients in Snack Foods—Historical and Developmental Aspects. Plants 2022, 11, 3330. [Google Scholar] [CrossRef]
- Bócsa, I.; Karus, M. The Cultivation of Hemp: Botany, Varieties, Cultivation and Harvesting; Hemptech: Sebastopol, CA, USA, 1998; Volume 184. [Google Scholar]
- Fleming, M.P.; Clarke, R.C. Physical evidence for the antiquity of Cannabis sativa L. J. Int. Hemp Assoc. 1998, 5, 80–92. [Google Scholar]
- Le, C. Industrial. Guide Technique; Institut Technique du Chanvre; Technopole de l’Aube en Champagne: Troyes, France, 2007. [Google Scholar]
- Benelli, G.; Pavela, R.; Petrelli, R.; Cappellacci, L.; Santini, G.; Fiorinin, D.; Sut, S.; Dall’Acqua, S.; Canale, A.; Maggi, F. The essential oil from industrial hemp (Cannabis sativa L.) by-products as an effective tool for insect pest management in organic crops. Ind. Crops Prod. 2018, 122, 308–315. [Google Scholar] [CrossRef]
- Bouloc, P.; Allegret, S.; Arnaud, L. (Eds.) Hemp: Industrial Production and Uses; CABI: Delémont, Switzerland, 2013; Volume 5, pp. 53–69. [Google Scholar]
- Zhang, M.; Anderson, S.L.; Brym, Z.T.; Pearson, B.J. Photoperiodic Flowering Response of Essential Oil, Grain, and Fiber Hemp (Cannabis sativa L.) Cultivars. Front. Plant Sci. 2021, 12, 1498. [Google Scholar] [CrossRef] [PubMed]
- Petit, J.; Salentijn, E.M.; Paulo, M.-J.; Thouminot, C.; van Dinter, B.J.; Magagnini, G.; Gusovius, H.-J.; Tang, K.; Amaducci, S.; Wang, S. Genetic Variability of Morphological, Flowering, and Biomass Quality Traits in Hemp (Cannabis sativa L.). Front. Plant Sci. 2020, 11, 102. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, T.; Honermeier, B. Effect of sowing date and plant density on the cell morphology of hemp (Cannabis sativa L.). Ind. Crops Prod. 2006, 23, 88–98. [Google Scholar] [CrossRef]
- Amaducci, S.; Colauzzi, M.; Zatta, A.; Venturi, G. Flowering Dynamics in Monoecious and Dioecious Hemp Genotypes. J. Ind. Hemp 2008, 13, 5–19. [Google Scholar] [CrossRef]
- Salentijn, E.M.; Petit, J.; Trindade, L.M. The Complex Interactions Between Flowering Behavior and Fiber Quality in Hemp. Front. Plant Sci. 2019, 10, 614. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.; Bhattarai, S.P.; Midmore, D.J. Review of Flowering Control in Industrial Hemp. J. Nat. Fibers 2012, 9, 23–36. [Google Scholar] [CrossRef]
- Hall, J.; Bhattarai, S.P.; Midmore, D.J. The Effects of Photoperiod on Phenological Development and Yields of Industrial Hemp. J. Nat. Fibers 2014, 11, 87–106. [Google Scholar] [CrossRef]
- Sengloung, T.; Kaveeta, L.; Nanakorn, W. Effect of Sowing Date on Growth and Development of Thai Hemp (Cannabis sativa L.). Agric. Nat. Resour. 2009, 43, 423–431. [Google Scholar]
- Islam, M.J.; Ryu, B.R.; Azad, M.O.; Rahman, M.H.; Cheong, E.J.; Lim, J.-D.; Lim, Y.-S. Cannabinoids Accumulation in Hemp (Cannabis sativa L.) Plants under LED Light Spectra and Their Discrete Role as a Stress Marker. Biology 2021, 10, 710. [Google Scholar] [CrossRef] [PubMed]
- Baldini, M.; Ferfuia, C.; Zuliani, F.; Danuso, F. Suitability Assessment of Different Hemp (Cannabis Sativa L.) Varieties to the Cultivation Environment. Ind. Crops Prod. 2020, 143, 111860. [Google Scholar] [CrossRef]
- Anwar, F.; Latif, S.; Ashraf, M. Analytical Characterization of Hemp (Cannabis sativa) Seed Oil from Different Agro-Ecological Zones of Pakistan. J. Am. Oil Chem. Soc. 2006, 83, 323–329. [Google Scholar] [CrossRef]
- Hall, J.; Bhattarai, S.P.; Midmore, D.J. The Effects of Different Sowing Times on Maturity Rates, Biomass, and Plant Growth of Industrial Fiber Hemp. J. Nat. Fibers 2013, 10, 40–50. [Google Scholar] [CrossRef]
- Gill, A.R.; Loveys, B.R.; Cowley, J.M.; Hall, T.; Cavagnaro, T.R.; Burton, R.A. Physiological and morphological responses of industrial hemp (Cannabis sativa L.) to water deficit. Ind. Crops Prod. 2022, 187, 115331. [Google Scholar] [CrossRef]
- Žydelis, R.; Herbst, M.; Weihermüller, L.; Ruzgas, R.; Volungevičius, J.; Barčauskaitė, K.; Tilvikienė, V. Yield potential and factor influencing yield gap in industrial hemp cultivation under nemoral climate conditions. Eur. J. Agron. 2022, 139, 126576. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Durán Zuazo, V.H.; Sánchez-Carnenero, C.; Hernández, A.; Ferreiro-Vera, C.; Casano, S. Seeking Suitable Agronomical Practices for Industrial Hemp (Cannabis sativa L.) Cultivation for Biomedical Applications. Ind. Crops Prod. 2019, 139, 111524. [Google Scholar] [CrossRef]
- Salentijn, E.M.; Zhang, Q.; Amaducci, S.; Yang, M.; Trindade, L.M. New developments in fiber hemp (Cannabis sativa L.) breeding. Ind. Crops Prod. 2015, 68, 32–41. [Google Scholar] [CrossRef]
- Meijer, W.D.; Van der Werf, H.M.G.; Mathijssen, E.W.J.M.; Van den Brink, P.W.M. Constraints to dry matter production in fibre hemp (Cannabis sativa L.). Eur. J. Agron. 1995, 4, 109–117. [Google Scholar] [CrossRef]
- Herppich, W.B.; Gusovius, H.-J.; Flemming, I.; Drastig, K. Effects of Drought and Heat on Photosynthetic Performance, Water Use and Yield of Two Selected Fiber Hemp Cultivars at a Poor-Soil Site in Brandenburg (Germany). Agronomy 2020, 10, 1361. [Google Scholar] [CrossRef]
- Cosentino, S.; Riggi, E.; Giorgio, T.; Scordia, D.; Venera, C. Evaluation of European Developed Fibre Hemp Genotypes (Cannabis sativa L.) in Semi-Arid Mediterranean Environment. Ind. Crops Prod. 2013, 50, 312–324. [Google Scholar] [CrossRef]
- Di Bari, V.; Campi, P.; Colucci, R.; Mastrorilli, M. Potential Productivity of Fibre Hemp in Southern Europe. Euphytica 2004, 140, 25–32. [Google Scholar] [CrossRef]
- Van der Werf, H.M.G. Agronomy and Crop Physiology of Fibre Hemp: A Literature Review. Cent. Agrobiol. Res. (CABO-DLO) Rep. 1991, 142, 83–96. [Google Scholar]
- Zheljazkov, V.D.; Maggi, F. Valorization of CBD-hemp through distillation to provide essential oil and improved cannabinoids profile. Sci. Rep. 2021, 11, 19890. [Google Scholar] [CrossRef]
- Campbell, B.J.; Berrada, A.F.; Hudalla, C.; Amaducci, S.; McKay, J.K. Genotype × Environment Interactions of Industrial Hemp Cultivars Highlight Diverse Responses to Environmental Factors. Agrosystems Geosci. Environ. 2019, 2, 180057. [Google Scholar] [CrossRef]
- Satriani, A.; Loperte, A.; Pascucci, S. The Cultivation of Industrial Hemp as Alternative Crop in a Less-Favoured Agricultural Area in Southern Italy: The Pignola Case Study. Pollutants 2021, 1, 169–180. [Google Scholar] [CrossRef]
- Sheldon, K.; Shekoofa, A.; Walker, E.; Kelly, H. Physiological Screening for Drought-Tolerance Traits Among Hemp (Cannabis sativa L.) Cultivars in Controlled Environments and in Field. J. Crop Improv. 2021, 35, 816–831. [Google Scholar] [CrossRef]
- Park, S.-H.; Pauli, C.S.; Gostin, E.L.; Staples, S.K.; Seifried, D.; Kinney, C.; Vanden Heuvel, B.D. Effects of Short-Term Environmental Stresses on the Onset of Cannabinoid Production in Young Immature Flowers of Industrial Hemp (Cannabis sativa L.). J. Cannabis Res. 2022, 4, 126–132. [Google Scholar] [CrossRef]
- Stack, G.M.; Toth, J.A.; Carlson, C.H.; Cala, A.R.; Marrero-González, M.I.; Wilk, R.L.; Smart, L.B. Season-long characterization of high-cannabinoid hemp (Cannabis sativa L.) reveals variation in cannabinoid accumulation, flowering time, and disease resistance. GCB Bioenergy 2021, 13, 546–561. [Google Scholar] [CrossRef]
- Hu, H.; Liu, H.; Liu, F. Seed Germination of Hemp (Cannabis sativa L.) Cultivars Responds Differently to the Stress of Salt Type and Concentration. Ind. Crops Prod. 2018, 123, 254–261. [Google Scholar] [CrossRef]
- Hu, H.; Liu, H.; Du, G.; Yang, F.; Deng, G.; Yang, Y.; Liu, F. Fiber and seed type of hemp (Cannabis sativa L.) responded differently to salt-alkali stress in seedling growth and physiological indices. Ind. Crops Prod. 2019, 129, 624–630. [Google Scholar] [CrossRef]
- Dixit, N. Salinity Induced Antioxidant Defense in Roots of Industrial Hemp (IH: Cannabis sativa L.) for Fiber during Seed Germination. Antioxidants 2022, 11, 244. [Google Scholar] [CrossRef]
- Struik, P.C.; Amaducci, S.; Bullard, M.J.; Stutterheim, N.C.; Venturi, G.; Cromack, H.T.H. Agronomy of fibre hemp (Cannabis sativa L.) in Europe. Ind. Crops Prod. 2000, 11, 107–118. [Google Scholar] [CrossRef]
- De Prato, L.; Ansari, O.; Hardy, G.E.S.J.; Howieson, J.; O’Hara, G.; Ruthrof, K.X. The cannabinoid profile and growth of hemp (Cannabis sativa L.) is influenced by tropical daylengths and temperatures, genotype and nitrogen nutrition. Ind. Crops Prod. 2022, 178, 114605. [Google Scholar] [CrossRef]
- Żuk-Gołaszewska, K.; Gołaszewski, J. Hemp production. In Sustainable Agriculture Reviews 42: Hemp Production and Applications; Springer: Cham, Switzerland, 2020; Volume 4, pp. 1–36. [Google Scholar]
- Owen, W.G.; Behe, B. A national survey to characterize industrial hemp (Cannabis sativa L.) production challenges under protected cultivation. J. Agric. Hemp Res. 2020, 1, 4. [Google Scholar] [CrossRef]
- Hammami, N.; Privé, J.P.; Joly, D.L.; Moreau, G. Associations between cannabinoids and growth stages of twelve industrial hemp cultivars grown outdoors in Atlantic Canada. Ind. Crops Prod. 2021, 172, 113997. [Google Scholar] [CrossRef]
- Blandinières, H.; Amaducci, S. Agronomy and ecophysiology of hemp cultivation. In Cannabis/Hemp for Sustainable Agriculture and Materials; Springer: Singapore, 2022; Volume 8, pp. 89–125. [Google Scholar]
- Poniatowska, J.; Panasiewicz, K.; Wielgus, K.; Szalata, M.; Jaśkiewicz, B. Influence of agroclimatic conditions on active substances content in hemp cultivated in the South-East Baltic region. J. Nat. Fibers 2022, 19, 6119–6133. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Hernández, A.; Ferreiro-Vera, C.; Zuazo, V.H.D.; García, J.H.; Sánchez-Carnerero, C.; Casano, S. Yield of new hemp varieties for medical purposes under semi-arid Mediterranean environment conditions. Commun. Sci. 2020, 11, e3264. [Google Scholar] [CrossRef]
- Hammami, N.; Privé, J.P.; Moreau, G. Spatiotemporal variability and sensitivity of industrial hemp cultivars under variable field conditions. Eur. J. Agron. 2022, 138, 126549. [Google Scholar] [CrossRef]
- Tang, K.; Wang, J.; Yang, Y.; Deng, G.; Yu, J.; Hu, W.; Liu, F. Fiber hemp (Cannabis sativa L.) yield and its response to fertilization and planting density in China. Ind. Crops Prod. 2022, 177, 114542. [Google Scholar] [CrossRef]
- Kakabouki, I.; Kousta, A.; Folina, A.; Karydogianni, S.; Zisi, C.; Kouneli, V.; Papastylianou, P. Effect of fertilization with urea and inhibitors on growth, yield and cbd concentration of hemp (Cannabis sativa L.). Sustainability 2021, 13, 2157. [Google Scholar] [CrossRef]
- Tedeschi, A.; Volpe, M.G.; Polimeno, F.; Siano, F.; Maglione, G.; Di Tommasi, P.; Vitale, L. Soil fertilization with urea has little effect on seed quality but reduces soil N2O emissions from a hemp cultivation. Agriculture 2020, 10, 240. [Google Scholar] [CrossRef]
- James, M.S.; Vann, M.C.; Suchoff, D.H.; McGinnis, M.; Whipker, B.E.; Edmisten, K.L.; Gatiboni, L.C. Hemp yield and cannabinoid concentrations under variable nitrogen and potassium fertilizer rates. Crop Sci. 2023, 63, 1555–1565. [Google Scholar] [CrossRef]
- Frankowski, J.; Przybylska-Balcerek, A.; Graczyk, M.; Niedziela, G.; Sieracka, D.; Stuper-Szablewska, K. The Effect of Mineral Fertilization on the Content of Bioactive Compounds in Hemp Seeds and Oil. Molecules 2023, 28, 4870. [Google Scholar] [CrossRef] [PubMed]
- Atoloye, I.A.; Adesina, I.; Shahbazi, A.; Bhowmik, A. Response of cannabidiol hemp (Cannabis sativa L.) varieties grown in the southeastern United States to nitrogen fertilization. Open Agric. 2022, 7, 373–381. [Google Scholar] [CrossRef]
- Laleh, S.; Al-Ahmadi, M.J.; Parsa, S. Response of hemp (Cannabis sativa L.) to integrated application of chemical and manure fertilizers. Acta Agric. Slov. 2021, 117, 1–15. [Google Scholar] [CrossRef]
- Kalinowski, J.; Edmisten, K.; Davis, J.; McGinnis, M.; Hicks, K.; Cockson, P.; Whipker, B.E. Augmenting nutrient acquisition ranges of greenhouse grown CBD (Cannabidiol) hemp (Cannabis sativa) cultivars. Horticulturae 2020, 6, 98. [Google Scholar] [CrossRef]
- Rheay, H.T.; Omondi, E.C.; Brewer, C.E. Potential of hemp (Cannabis sativa L.) for paired phytoremediation and bioenergy production. GCB Bioenergy 2021, 13, 525–536. [Google Scholar] [CrossRef]
- Prade, T.; Svensson, S.E.; Andersson, A.; Mattsson, J.E. Biomass and energy yield of industrial hemp grown for biogas and solid fuel. Biomater. Bioeng. 2011, 35, 3040–3049. [Google Scholar] [CrossRef]
- Dubrow, G.A.; Pawar, R.S.; Srigley, C.; Sam, J.F.; Talavera, C.; Parker, C.H.; Noonan, G.O. A survey of cannabinoids and toxic elements in hemp-derived products from the United States marketplace. J. Food Compos. Anal. 2021, 97, 103800. [Google Scholar] [CrossRef]
- Horne, M.R. Bast fibres: Hemp cultivation and production. In Handbook of Natural Fibres; Woodhead Publishing: Sawston, UK, 2020; Volume 4, pp. 163–196. [Google Scholar]
- Kousta, A.; Papastylianou, P.; Travlos, I.; Mavroeidis, A.; Kakabouki, I. Effect of Fertilization and Weed Management Practices on Weed Diversity and Hemp Agronomic Performance. Agronomy 2023, 13, 1060. [Google Scholar] [CrossRef]
- Poniatowska, J.; Panasiewicz, K.; Szalata, M.; Zarina, L.; Zute, S.; Wielgus, K. Variability of cannabinoid yields of fibre hemp cultivars depending on the sowing density and nitrogen fertilisation. Plant Soil Environ. 2022, 68, 525–532. [Google Scholar] [CrossRef]
- Bevan, L.; Jones, M.; Zheng, Y. Optimisation of nitrogen, phosphorus, and potassium for soilless production of Cannabis sativa in the flowering stage using response surface analysis. Front. Plant Sci. 2021, 12, 764103. [Google Scholar] [CrossRef] [PubMed]
- Podder, S.; Shafian, S.; Thomason, W.E.; Wilson, T.B.; Fike, J.H. Hemp Seed Yield Responses to Nitrogen Fertility Rates. Crops 2024, 4, 145–155. [Google Scholar] [CrossRef]
- Blandinières, H.; Croci, M.; Impollonia, G.; Marcone, A.; Gay, A.; Winters, A.; Amaducci, S. Multi-environment assessment of a yellow hemp (Cannabis sativa L.) cultivar’s eco-physiology and productivity under varying levels of nitrogen fertilisation. Ind. Crops Prod. 2023, 195, 116360. [Google Scholar] [CrossRef]
- Yang, Y.; Zha, W.; Tang, K.; Deng, G.; Du, G.; Liu, F. Effect of nitrogen supply on growth and nitrogen utilization in hemp (Cannabis sativa L.). Agronomy 2021, 11, 2310. [Google Scholar] [CrossRef]
- Jelliffe, J.; Lopez, R.A.; Ghimire, S. CBD hemp production costs and returns for Connecticut farmers in 2020. Zwick Cent. Outreach Rep. 2020, 66, 1–19. [Google Scholar]
- Kaur, N.; Brym, Z.; Oyola, L.A.M.; Sharma, L.K. Nitrogen fertilization impact on hemp (Cannabis sativa L.) crop production: A review. Agron. J. 2023, 115, 1557–1570. [Google Scholar] [CrossRef]
- Aubin, M.P.; Seguin, P.; Vanasse, A.; Tremblay, G.F.; Mustafa, A.F.; Charron, J.B. Industrial hemp response to nitrogen, phosphorus, and potassium fertilization. Crop Forage Turfgrass Manag. 2015, 1, 1–10. [Google Scholar] [CrossRef]
- Vera, C.L.; Malhi, S.S.; Raney, J.P.; Wang, Z.H. The effect of N and P fertilization on growth, seed yield and quality of industrial hemp in the Parkland region of Saskatchewan. Can. J. Plant Sci. 2004, 84, 939–947. [Google Scholar] [CrossRef]
- Sausserde, R.; Adamovičs, A. Impact of nitrogen fertilizer rates on industrial hemp growth and development. PLoS ONE 2013, 3, e4561208. [Google Scholar]
- Campiglia, E.; Radicetti, E.; Mancinelli, R. Plant density and nitrogen fertilization affect agronomic performance of industrial hemp (Cannabis sativa L.) in Mediterranean environment. Ind. Crops Prod. 2017, 100, 246–254. [Google Scholar] [CrossRef]
- Anderson, S.L.; Pearson, B.; Kjelgren, R.; Brym, Z. Response of essential oil hemp (Cannabis sativa L.) growth, biomass, and cannabinoid profiles to varying fertigation rates. PLoS ONE 2021, 16, e0252985. [Google Scholar] [CrossRef] [PubMed]
- Sausserde, R.; Adamovics, A. Effect of nitrogen fertilizer rates on industrial hemp (Cannabis sativa L.) Biomass production. In Proceedings of the International Multidisciplinary Scientific GeoConference: SGEM, Albena, Bulgaria, 16–22 June 2013; Volume 1, pp. 339–351. [Google Scholar]
- Vági, E.; Balázs, M.; Komóczi, A.; Kiss, I.; Mihalovits, M.; Székely, E. Cannabinoids enriched extracts from industrial hemp residues. Period. Polytech. Chem. Eng. 2019, 63, 357–363. [Google Scholar] [CrossRef]
- Saloner, A.; Bernstein, N. Response of medical cannabis (Cannabis sativa L.) to nitrogen supply under long photoperiod. Front. Plant Sci. 2020, 11, 572293. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, N.; Formisano, C.; Delfine, S.; Chianese, G. Environmental and agronomic factors affecting the chemical composition and biological activity of cannabis extracts. Front. Plant Sci. 2024, 15, 1407262. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, K.P.; Hoeng, J.; Goffman, F.; Schlage, W.K.; Latino, D. Opportunities, Challenges, and Scientific Progress in Hemp Crops. Molecules 2024, 29, 2397. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.; Du, G.; Yang, Y.; Bao, Y.; Liu, F. Planting density and fertilization evidently influence the fiber yield of hemp (Cannabis sativa L.). Agronomy 2019, 9, 368. [Google Scholar] [CrossRef]
- Szalata, M.; Dreger, M.; Zielińska, A.; Banach, J.; Szalata, M.; Wielgus, K. Simple extraction of cannabinoids from female inflorescences of hemp (Cannabis sativa L.). Molecules 2022, 27, 5868. [Google Scholar] [CrossRef]
- Malík, M.; Velechovský, J.; Tlustoš, P. The overview of existing knowledge on medical cannabis plants growing. Plant Soil Environ. 2021, 67, 425–442. [Google Scholar] [CrossRef]
- Black, C.A. Effect of commercial fertilizers on the sex expression of hemp. Bot. Gaz. 1945, 107, 114–120. [Google Scholar] [CrossRef]
- Glivar, T.; Eržen, J.; Kreft, S.; Zagožen, M.; Čerenak, A.; Čeh, B.; Benković, E.T. Cannabinoid content in industrial hemp (Cannabis sativa L.) varieties grown in Slovenia. Ind. Crops Prod. 2020, 145, 112082. [Google Scholar] [CrossRef]
- Cahill, M.S.; Arsenault, T.; Bui, T.H.; Zuverza-Mena, N.; Bharadwaj, A.; Prapayotin-Riveros, K.; Dimkpa, C.O. Copper Stimulation of Tetrahydrocannabinol and Cannabidiol Production in Hemp (Cannabis sativa L.) Is Copper-Type, Dose, and Cultivar Dependent. J. Agric. Food Chem. 2024, 72, 6921–6930. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Deng, H.; Heise, J.A.; Puthoff, D.P.; Bou-Abboud, N.; Yu, H.; Peng, J. Contents of cannabinoids in hemp varieties grown in Maryland. ACS Omega 2021, 6, 32186–32197. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhou, W.; Long, S.; Guo, Y.; Qiu, C.; Zhao, X.; Wang, Y. Effects of Different N, P, and K Rates on the Growth and Cannabinoid Content of Industrial Hemp. J. Nat. Fibers 2023, 20, 2159605. [Google Scholar] [CrossRef]
- Bruce, D.; Connelly, G.; Ellison, S. Different fertility approaches in organic hemp (Cannabis sativa L.) production alter floral biomass yield but not CBD: THC ratio. Sustainability 2022, 14, 6222. [Google Scholar] [CrossRef]
- Silva, E.C.D.; Muraoka, T.; Franzini, V.I.; Villanueva, F.C.A.; Buzetti, S.; Moreti, D. Phosphorus utilization by corn as affected by green manure, nitrogen and phosphorus fertilizers. Pesqui. Agropecu. Bras. 2012, 47, 1150–1157. [Google Scholar] [CrossRef]
- Pacifico, D.; Miselli, F.; Carboni, A.; Moschella, A.; Mandolino, G. Time course of cannabinoid accumulation and chemotype development during the growth of Cannabis sativa L. Euphytica 2008, 160, 231–240. [Google Scholar] [CrossRef]
- Bernstein, N.; Gorelick, J.; Zerahia, R.; Koch, S. Impact of N, P, K, and humic acid supplementation on the chemical profile of medical cannabis (Cannabis sativa L.). Front. Plant Sci. 2019, 10, 736. [Google Scholar] [CrossRef]
- Iványi, I.; Izsáki, Z. Effect of nitrogen, phosphorus, and potassium fertilization on nutrional status of fiber hemp. Commun. Soil Sci. Plant Anal. 2009, 40, 974–986. [Google Scholar] [CrossRef]
- Coffman, C.B.; Gentner, W.A. Responses of Greenhouse-grown Cannabis sativa L. to Nitrogen, Phosphorus, and Potassium 1. Agron. J. 1977, 69, 832–836. [Google Scholar] [CrossRef]
- Vera, C.L.; Malhi, S.S.; Moskal, G.J.; Leach, D.W. How hungry is hemp for fertilizers? In Soils and Crops Workshop; The University of Saskatchewan: Saskatoon, SK, Canada, 2002. [Google Scholar]
- Rosas, J.M.; Bedia, J.R.M.J.; Rodríguez-Mirasol, J.; Cordero, T. HEMP-derived activated carbon fibers by chemical activation with phosphoric acid. Fuel 2009, 88, 19–26. [Google Scholar] [CrossRef]
- Iványi, I. Hemp resilience within agro-ecosystem. Növénytermelés 2010, 59 (Suppl. 8), 409–412. [Google Scholar]
- Gibson, A.R. Growth Studies with Hemp (Cannabis sativa L.). Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2007. [Google Scholar]
- Finnan, J.; Burke, B. Potassium fertilization of hemp (Cannabis sativa). Ind. Crops Prod. 2013, 41, 419–422. [Google Scholar] [CrossRef]
- Moscariello, C.; Matassa, S.; Esposito, G.; Papirio, S. From residue to resource: The multifaceted environmental and bioeconomy potential of industrial hemp (Cannabis sativa L.). Resour. Conserv. Recycl. 2021, 175, 105864. [Google Scholar] [CrossRef]
- Coffman, C.B.; Gentner, W.A. Greenhouse propagation of Cannabis sativa L. by vegetative cuttings. Econ. Bot. 1979, 33, 124–127. [Google Scholar] [CrossRef]
- Saloner, A.; Bernstein, N. Effect of potassium (K) supply on cannabinoids, terpenoids and plant function in medical cannabis. Agronomy 2022, 12, 1242. [Google Scholar] [CrossRef]
- Linder, E.R.; Young, S.; Li, X.; Henriquez Inoa, S.; Suchoff, D.H. The effect of transplant date and plant spacing on biomass production for floral hemp (Cannabis sativa L.). Agronomy 2022, 12, 1856. [Google Scholar] [CrossRef]
- Saloner, A.; Sacks, M.M.; Bernstein, N. Response of medical cannabis (Cannabis sativa L.) genotypes to K supply under long photoperiod. Front. Plant Sci. 2019, 10, 1369. [Google Scholar] [CrossRef]
- Treadwell, D.; Chase, C.; Cho, A.; Alligood, M.; Elsakr, J. Potential for sunn hemp (Crotalaria juncea) to utilize soil potassium. Proc. Fla. State Hortic. Soc. 2009, 122, 243–246. [Google Scholar]
- McPartland, J.M.; Cutler, S.; McIntosh, D.J. Hemp production in Aotearoa. J. Ind. Hemp 2004, 9, 105–115. [Google Scholar] [CrossRef]
- Iványi, I. Relationship between leaf nutrient concentrations and yield of fibre hemp (Cannabis sativa L.). Cereal Res. Commun. 2005, 33, 97–100. [Google Scholar] [CrossRef]
- Sedan, D.; Pagnoux, C.; Chotard, T.; Smith, A.; Lejolly, D.; Gloaguen, V.; Krausz, P. Effect of calcium rich and alkaline solutions on the chemical behaviour of hemp fibres. J. Mater. Sci. 2007, 42, 9336–9342. [Google Scholar] [CrossRef]
- Corrado, G.; Pannico, A.; Zarrelli, A.; Kyriacou, M.C.; De Pascale, S.; Rouphael, Y. Macro and trace element mineral composition of six hemp varieties grown as microgreens. J. Food Compos. Anal. 2022, 114, 104750. [Google Scholar] [CrossRef]
- Alonso-Esteban, J.I.; Torija-Isasa, M.E.; de Cortes Sánchez-Mata, M. Mineral elements and related antinutrients, in whole and hulled hemp (Cannabis sativa L.) seeds. J. Food Compos. Anal. 2022, 109, 104516. [Google Scholar] [CrossRef]
- Schayot, C.T. Hemp Microgreen Mineral Content, Cannabinoids, Total Phenolics, and Antioxidants. Ph.D. Thesis, Louisiana State University and Agricultural & Mechanical College, Baton Rouge, LA, USA, 2021. [Google Scholar]
- Yep, B.; Zheng, Y. Potassium and micronutrient fertilizer addition in a mock aquaponic system for drug-type Cannabis sativa L. cultivation. Can. J. Plant Sci. 2020, 101, 341–352. [Google Scholar] [CrossRef]
- Korkmaz, K.; Kara, S.M.; Ozkutlu, F.; Gul, V. Monitoring of heavy metals and selected micronutrients in hempseeds from North-western Turkey. Afr. J. Agric. Res. 2010, 5, 463–467. [Google Scholar]
- Mihoc, M.; Pop, G.; Alexa, E.; Dem, D.; Militaru, A. Microelements distribution in whole hempseeds (Cannabis sativa L.) and in their fractions. Rev. De. Chim. 2013, 64, 776–780. [Google Scholar]
- Morad, D.; Bernstein, N. Response of medical cannabis to magnesium (Mg) supply at the vegetative growth phase. Plants 2023, 12, 2676. [Google Scholar] [CrossRef]
- Menezes, I.M.; Nascimento, P.D.A.; Yamamoto, C.I.; Oliveira, A. Evaluation of trace elements in cannabis products. J. Food Compos. Anal. 2022, 113, 104721. [Google Scholar] [CrossRef]
- Kalousek, P.; Holátko, J.; Schreiber, P.; Pluháček, T.; Širůčková Lónová, K.; Radziemska, M.; Brtnický, M. The effect of chelating agents on the Zn-phytoextraction potential of hemp and soil microbial activity. Chem. Biol. Technol. Agric. 2024, 11, 23. [Google Scholar] [CrossRef]
- Łochyńska, M.; Frankowski, J. Impact of silkworm excrement organic fertilizer on hemp biomass yield and composition. J. Ecol. Eng. 2019, 20, 63–71. [Google Scholar] [CrossRef]
- Łochyńska, M.; Frankowski, J. The effects of silkworm excrement organic fertilizer on the hemp yield. J. Nat. Fibers 2022, 19, 847–857. [Google Scholar] [CrossRef]
- Hinds, J.; Wang, K.H.; Marahatta, S.P.; Meyer, S.L.; Hooks, C.R. Sunn hemp cover cropping and organic fertilizer effects on the nematode community under temperate growing conditions. J. Nematol. 2013, 45, 265. [Google Scholar]
- Caplan, D.; Dixon, M.; Zheng, Y. Optimal rate of organic fertilizer during the flowering stage for cannabis grown in two coir-based substrates. HortScience 2017, 52, 1796–1803. [Google Scholar] [CrossRef]
- Forrest, C.; Young, J.P. The effects of organic and inorganic nitrogen fertilizer on the morphology and anatomy of Cannabis sativa “Fédrina” (industrial fibre hemp) grown in Northern British Columbia, Canada. J. Ind. Hemp 2006, 11, 3–24. [Google Scholar] [CrossRef]
- Caplan, D.; Dixon, M.; Zheng, Y. Optimal rate of organic fertilizer during the vegetative-stage for cannabis grown in two coir-based substrates. HortScience 2017, 52, 1307–1312. [Google Scholar] [CrossRef]
- Yuliana, A.I.; Sumarni, T.; Islami, T. Application of bokashi and sunn hemp (Crotalaria juncea L.) to improve inorganic fertilizer efficiency on maize (Zea mays L.). J. Degrad. Min. Lands Manag. 2015, 3, 433. [Google Scholar]
- Al-Ahmadi, S.L.M.J.; Parsa, S. Effect of Different Levels of Organic and Chemical Fertilizers on Yield, Harvest Index and Extract Percentage of Hemp (Cannabis sativa L.). Iran. J. Field Crops Res. 2017, 15, 823–837. [Google Scholar]
- Wylie, S.E.; Ristvey, A.G.; Fiorellino, N.M. Fertility management for industrial hemp production: Current knowledge and future research needs. GCB Bioenergy 2021, 13, 517–524. [Google Scholar] [CrossRef]
- Pylypchenko, A.; Marenych, M.; Hanhur, V.; Semenov, A.; Korotkova, I.; Rozhkov, A.; Ponomarenko, S. Impact of Organic Cultivation Technology of Fiber Hemp (Cannabis Sativa L.) on Soil Agrochemical and Bioecological Properties. J. Ecol. Eng. 2023, 24, 356–365. [Google Scholar] [CrossRef]
- Pylypchenko, A.; Marenych, M.; Hanhur, V.; Tymoshchuk, T.; Malynka, L. Features of forming the productivity of modern hemp varieties using organic cultivation technology. Sci. Horizons 2023, 26, 54–65. [Google Scholar] [CrossRef]
- Pylypchenko, A.; Marenych, M.; Hanhur, V.; Semenov, A.; Sakhno, T.; Ponomarenko, S.; Rozhkov, A. Formation of the Quality Indicators of Hemp (Cannabis sativa L.) Seeds Sown under Organic Growing Technology. J. Ecol. Eng. 2023, 24, 218–227. [Google Scholar] [CrossRef]
- Dingha, B.; Sandler, L.; Bhowmik, A.; Akotsen-Mensah, C.; Jackai, L.; Gibson, K.; Turco, R. Industrial hemp knowledge and interest among North Carolina organic farmers in the United States. Sustainability 2019, 11, 2691. [Google Scholar] [CrossRef]
- Höppner, F.; Menge-Hartmann, U. Cultivation experiments with two fibre hemp varieties. J. Intern. Hemp. Assoc. 1995, 2, 18–22. [Google Scholar]
- Jonaitienė, V.; Jankauskienė, Z.; Stuogė, I. Hemp cultivation opportunities and perspectives in Lithuania. In Natural Fibres: Advances in Science and Technology towards Industrial Applications: From Science to Market; Springer: Dordrecht, The Netherlands, 2016; Volume 4, pp. 407–414. [Google Scholar]
- Puiu, I.; Popa, L.D.; Robu, T.; Țibulcă Ghițău, C.S.; Țopa, D.C.; Lipșa, F.D.; Teliban, G.C. Research on the Optimization of the Industrial Hemp Cultivation Technology for the Full Use of Biomass. 2022. Available online: https://repository.iuls.ro/xmlui/handle/20.500.12811/3438 (accessed on 19 January 2024).
- Cherney, J.H.; Small, E. Industrial hemp in North America: Production, politics and potential. Agronomy 2016, 6, 58. [Google Scholar] [CrossRef]
- Ngobeni, N.D.; Mokoena, M.L.; Funnah, S.M. Growth and yield response of fibre hemp cultivars (Cannabis sativa L.) under different N-levels in Eastern Cape Province of South Africa. Afr. J. Agric. Res. 2016, 11, 57–64. [Google Scholar]
- Nath, M.K. Benefits of cultivating industrial hemp (Cannabis sativa ssp. sativa)—A versatile plant for a sustainable future. Chem. Proc. 2022, 10, 14. [Google Scholar] [CrossRef]
- Puttharak, P.; Wangnai, P.; Puttharak, J.; Baisaeng, N. Optimizing medicinal hemp production with synergistic light-enhanced technologies and organic biorefinery approaches. J. Photochem. Photobiol. B Biol. 2024, 254, 112890. [Google Scholar] [CrossRef]
- Dhondt, F.; Muthu, S.S. Hemp and Sustainability; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Zaica, A.; Anghelache, D.; Zaica, A.; Popa, D.; Teliban, G. Technologies and technical equipment for farmers in the field of hemp cultivation. Natl. Inst. Res.-Dev. Mach. Install. Des. Agric. Food Ind.-INMA Buchar. 2022, 8, 53–62. [Google Scholar]
- Malabadi, R.B.; Kolkar, K.P.; Chalannavar, R.K.; Acharya, M.; Mudigoudra, B.S. Industrial Cannabis sativa: Hemp-Biochar-Applications and Disadvantages. World J. Adv. Res. Rev. 2023, 20, 371–383. [Google Scholar] [CrossRef]
- Massuela, D.C.; Munz, S.; Hartung, J.; Nkebiwe, P.M.; Graeff-Hönninger, S. Cannabis Hunger Games: Nutrient stress induction in flowering stage–impact of organic and mineral fertilizer levels on biomass, cannabidiol (CBD) yield and nutrient use efficiency. Front. Plant Sci. 2023, 14, 1233232. [Google Scholar] [CrossRef]
- Westerhuis, W.; van Delden, S.H.; van Dam JE, G.; Marinho, J.P.; Struik, P.C.; Stomph, T.J. Plant weight determines secondary fibre development in fibre hemp (Cannabis sativa L.). Ind. Crops Prod. 2019, 139, 111493. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Santanen, A.; Jaakkola, S.; Ekholm, P.; Hartikainen, H.; Stoddard, F.L.; Mäkelä, P.S. Biomass yield and quality of bioenergy crops grown with synthetic and organic fertilizers. Biomass Bioenergy 2013, 59, 477–485. [Google Scholar] [CrossRef]
- Forrest, C. The Effects of Organic and Inorganic Nitrogen Fertilizer on the Morphology and Anatomy of Industrial Fibre Hemp (Cannabis sativa L.) Grown in Northern British Columbia, Canada. Ph.D. Thesis, University of Northern British Columbia, Prince George, BC, Canada, 2004. [Google Scholar]
- Van der Werf, H.M.L. life cycle analysis of field production of fibre hemp, the effect of production practices on environmental impacts. Euphytica 2004, 140, 13–23. [Google Scholar] [CrossRef]
- Amaducci, S.; Zatta, A.; Raffanini, M.; Venturi, G. Characterisation of hemp (Cannabis sativa L.) roots under different growing conditions. Plant Soil 2008, 313, 227–235. [Google Scholar] [CrossRef]
- Golia, E.E.; Bethanis, J.; Ntinopoulos, N.; Kaffe, G.G.; Komnou, A.A.; Vasilou, C. Investigating the potential of heavy metal accumulation from hemp. The use of industrial hemp (Cannabis Sativa L.) for phytoremediation of heavily and moderated polluted soils. Sustain. Chem. Pharm. 2023, 31, 100961. [Google Scholar] [CrossRef]
- Mark, T.B.; Will, S. Economic issues and perspectives for industrial hemp. Industrial Hemp as a Modern Commodity Crop; Wiley Online Library: Hoboken, NJ, USA, 2019; Volume 4, pp. 107–118. [Google Scholar]
- Fortenbery, T.R.; Bennett, M. Opportunities for commercial hemp production. Appl. Econ. Perspect. Policy 2004, 26, 97–117. [Google Scholar] [CrossRef]
- Wawro, A.; Batog, J.; Gieparda, W. Chemical and enzymatic treatment of hemp biomass for bioethanol production. Appl. Sci. 2019, 9, 5348. [Google Scholar] [CrossRef]
- Mark, T.; Shepherd, J.; Olson, D.; Snell, W.; Proper, S.; Thornsbury, S. Economic Viability of Industrial Hemp in the United States: A Review of State Pilot Programs. 2020. Available online: https://www.ers.usda.gov/webdocs/publications/95930/eib-217.pdf (accessed on 8 January 2024).
- Thompson, E.C.; Berger, M.C.; Allen, S.N. Economic Impact of Industrial Hemp in Kentucky. Ph.D. Thesis, Center for Business and Economic Research, Carol Martin Gatton College of Business and Economics, University of Kentucky, Lexington, KY, USA, 1998. [Google Scholar]
- Ji, A.; Jia, L.; Kumar, D.; Yoo, C.G. Recent advancements in biological conversion of industrial hemp for biofuel and value-added products. Fermentation 2021, 7, 6. [Google Scholar] [CrossRef]
- Yano, H.; Fu, W. Hemp: A sustainable plant with high industrial value in food processing. Foods 2023, 12, 651. [Google Scholar] [CrossRef]
- Carus, M.; Sarmento, L. The European Hemp Industry: Cultivation, processing and applications for fibres, shivs, seeds and flowers. Eur. Ind. Hemp. Assoc. 2016, 5, 1–9. [Google Scholar]
- Robinson, R. The Great Book of Hemp: The Complete Guide to the Environmental, Commercial, and Medicinal Uses of the World’s Most Extraordinary Plant; Inner Traditions/Bear Co.: Rochester, VT, USA, 1996. [Google Scholar]
- Vantreese, V.L. Industrial Hemp: Global Operations, Local Implications. Ph.D. Thesis, Department of Agricultural Economics, University of Kentucky, Lexington, KY, USA, 1998. [Google Scholar]
- Vantreese, V.L. Industrial Hemp: Global Markets and Prices. Ph.D. Thesis, Department of Agricultural Economics, University of Kentucky, Lexington, KY, USA, 1997. [Google Scholar]
- Ranalli, P. Advances in Hemp Research; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Muttil, N.; Sadath, S.; Coughlan, D.; Paresi, P.; Singh, S.K. Hemp as A Sustainable Carbon Negative Plant: A Review of Its Properties, Applications, Challenges and Future Directions. Int. J. Integr. Eng. 2024, 16, 1–12. [Google Scholar]
- Ely, K.; Podder, S.; Reiss, M.; Fike, J. Industrial hemp as a crop for a sustainable agriculture. In Cannabis/Hemp for Sustainable Agriculture and Materials; Springer: Singapore, 2022; pp. 1–28. [Google Scholar]
- Negoiţa, C. A critical analysis of hemp (Cannabis Sativa L.) use: Scientific, legislative and socio-economic aspects. J. Soc. Sci. 2024, 7, 17–34. [Google Scholar] [CrossRef]
- Dölle, K.; Kurzmann, D.E. Cannabis, the plant of the unlimited possibilities. Adv. Res 2019, 20, 1–22. [Google Scholar] [CrossRef]
- Fike, J. Industrial hemp: Renewed opportunities for an ancient crop. Crit. Rev. Plant Sci. 2016, 35, 406–424. [Google Scholar] [CrossRef]
- Johnson, R. Hemp as an Agricultural Commodity; Congressional Research Service: Washington, DC, USA, 2013; Volume 4, pp. 1–29. [Google Scholar]
- Fortenbery, T.R.; Mick, T.B. Industrial Hemp: Opportunities and Challenges for Washington. Available online: https://wpcdn.web.wsu.edu/cahnrs/uploads/sites/6/2021/09/WP2014-10.pdf (accessed on 25 January 2024).
- Sandberg, S. The importance of culture for cannabis markets: Towards an economic sociology of illegal drug markets. Br. J. Criminol. 2012, 52, 1133–1151. [Google Scholar] [CrossRef]
- Smith-Heisters, S. Environmental costs of hemp prohibition in the United States. J. Ind. Hemp 2008, 13, 157–170. [Google Scholar] [CrossRef]
- Chen, C.; Pan, Z. Cannabidiol and terpenes from hemp–ingredients for future foods and processing technologies. J. Future Foods 2021, 1, 113–127. [Google Scholar] [CrossRef]
- Ranalli, P. Current status and future scenarios of hemp breeding. Euphytica 2004, 140, 121–131. [Google Scholar] [CrossRef]
- Wimalasiri, E.M.; Jahanshiri, E.; Chimonyo, V.G.; Kuruppuarachchi, N.; Suhairi, T.A.S.T.M.; Azam-Ali, S.N.; Gregory, P.J. A framework for the development of hemp (Cannabis sativa L.) as a crop for the future in tropical environments. Ind. Crops Prod. 2021, 172, 113999. [Google Scholar] [CrossRef]
- Parvez, A.M.; Lewis, J.D.; Afzal, M.T. Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook. Renew. Sustain. Energy Rev. 2021, 141, 110784. [Google Scholar] [CrossRef]
- Ranalli, P.; Venturi, G. Hemp as a raw material for industrial applications. Euphytica 2004, 140, 1–6. [Google Scholar] [CrossRef]
- Small, E.; Marcus, D. Hemp: A new crop with new uses for North America. Trends New Crops New Uses 2002, 24, 284–326. [Google Scholar]
- Amaducci, S.; Gusevas, H.J. Hemp–cultivation, extraction and processing. In Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; Volume 3, pp. 109–134. [Google Scholar]
- Komahan, D.H.S.; Swanepoel, Q.M.; Nicholls, I.; Sofkova-Bobcheva, S.; Barge, R.; Kerckhoffs, L.H.J. Future Scenario of Better New Zealand Adapted Industrial Hemp Varieties. 2019. Available online: https://www.agronomysociety.org.nz/files/ASNZ_2019_07._Future_NZ_adapted_hemp_varieties.pdf (accessed on 18 January 2024).
- Sieracka, D.; Frankowski, J.; Wacławek, S.; Czekała, W. Hemp Biomass as a Raw Material for Sustainable Development. Appl. Sci. 2023, 13, 9733. [Google Scholar] [CrossRef]
- Ryz, N.R.; Remillard, D.J.; Russo, E.B. Cannabis roots: A traditional therapy with future potential for treating inflammation and pain. Cannabis Cannabinoid Res. 2017, 2, 210–216. [Google Scholar] [CrossRef]
- Rehman, M.S.U.; Rashid, N.; Saif, A.; Mahmood, T.; Han, J.I. Potential of bioenergy production from industrial hemp (Cannabis sativa): Pakistan perspective. Renew. Sustain. Energy Rev. 2013, 18, 154–164. [Google Scholar] [CrossRef]
Characteristic | Fiber Industrial Hemp | Marijuana |
---|---|---|
Phenotype | Tall, nearly tree-like, with relatively thin leaf and fiber stems that have fewer branches and blooms/buds | Shortened, bushier, with broadening leaves and numerous branches bearing abundant buds high in THC. |
Psychoactivity | No—whole plant; Yes—some concentrated extracts | Yes. |
Production | Field crops with fully mechanized commercial large-scale production. Whole populations with male and female plants are used. | Mostly manual and infrastructurally demanding indoor production under controlled lighting, humidity, and nutrition conditions. Only female plants are grown. |
Fiber and hurd for industrial application: textile production, papermaking, construction industry, biocomposites, and animal bedding; biomass: fuel, heat and electricity, hemp mulch, ropes, and twines. | ||
Usage | Hempseed for hemp oil, hemp oil products: body care and cosmetic products, industrial oil uses, source of feed additives, fuel feedstock, source of human food additives, and medicines. | The psychoactive effect determines its use for recreational purposes and its application as a medicinal product. |
Herb parts include leaves, flowers, and bracts: essential oil as a source of human food additives, medicines, and nutritional supplements. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi, F.; Kallinger, D.; Starzinger, A.; Lackner, M. Hemp (Cannabis salvia L.) Cultivation: Chemical Fertilizers or Organic Technologies, a Comprehensive Review. Nitrogen 2024, 5, 624-654. https://doi.org/10.3390/nitrogen5030042
Ahmadi F, Kallinger D, Starzinger A, Lackner M. Hemp (Cannabis salvia L.) Cultivation: Chemical Fertilizers or Organic Technologies, a Comprehensive Review. Nitrogen. 2024; 5(3):624-654. https://doi.org/10.3390/nitrogen5030042
Chicago/Turabian StyleAhmadi, Fatemeh, Daniel Kallinger, August Starzinger, and Maximilian Lackner. 2024. "Hemp (Cannabis salvia L.) Cultivation: Chemical Fertilizers or Organic Technologies, a Comprehensive Review" Nitrogen 5, no. 3: 624-654. https://doi.org/10.3390/nitrogen5030042
APA StyleAhmadi, F., Kallinger, D., Starzinger, A., & Lackner, M. (2024). Hemp (Cannabis salvia L.) Cultivation: Chemical Fertilizers or Organic Technologies, a Comprehensive Review. Nitrogen, 5(3), 624-654. https://doi.org/10.3390/nitrogen5030042