Predicting Soil Nitrogen Availability for Maize Production in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils
2.2. Mineralization Assays
2.3. Soil Nitrogen Analyses
2.4. Greenhouse Study
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aguiar, A.T.D.E.; Gonçalves, C.; Paterniani, M.E.A.G.Z.; Tucci, M.L.S.; Castro, C.E.F.D. Instruções Agrícolas Para as Principais Culturas Econômicas, Boletim 200, 7th ed.; Aguiar, A.T.D.E., Gonçalves, C., Paterniani, M.E.A.G.Z., Tucci, M.L.S., Castro, C.E.F.D., Eds.; Instituto Agronômico de Campinas: Campinas, Brazil, 2014; ISBN 0375-1538. [Google Scholar]
- Sylvestre, T.D.B.; Braos, L.B.; Batistella Filho, F.; Cruz, M.C.P.D.; Ferreira, M.E. Mineral Nitrogen Fertilization Effects on Lettuce Crop Yield and Nitrogen Leaching. Sci. Hortic. 2019, 255, 153–160. [Google Scholar] [CrossRef]
- Otto, R.; Mulvaney, R.L.; Khan, S.A.; Trivelin, P.C.O. Quantifying Soil Nitrogen Mineralization to Improve Fertilizer Nitrogen Management of Sugarcane. Biol. Fertil. Soils 2013, 49, 893–904. [Google Scholar] [CrossRef]
- Bettiol, A.C.T.; Braos, L.B.; Lopes, I.G.; Andriolli, I.; Ferreira, M.E.; Cruz, M.C.P. Evaluation of Potentially Available Nitrogen by Biological and Chemical Methods in Soil Cultivated with Maize in Succession to Cover Crops. J. Plant Nutr. 2021, 45, 1919–1932. [Google Scholar] [CrossRef]
- Duete, R.R.C.; Muraoka, T.; Silva, E.C.D.; Ambrosano, E.J.; Trivelin, P.C.O. Acúmulo de Nitrogênio (15N) Pelos Grãos de Milho Em Função Da Fonte Nitrogenada Em Latossolo Vermelho. Bragantia 2009, 68, 463–472. [Google Scholar] [CrossRef]
- Lucas, F.T.; Borges, B.M.M.N.; Coutinho, E.L.M. Nitrogen Fertilizer Management for Maize Production under Tropical Climate. Agron. J. 2019, 111, 2031–2037. [Google Scholar] [CrossRef] [Green Version]
- Harmsen, G.W.; van Schreven, D.A. Mineralization of Organic Nitrogen in Soil. Adv. Agron. 1955, 7, 299–398. [Google Scholar] [CrossRef]
- Waring, S.A.; Bremner, J.M. Ammonium Production in Soil Under Waterlogged Conditions as an Index of Nitrogen Availability. Nature (London) 1964, 201, 951–952. [Google Scholar] [CrossRef]
- Keeney, D.R. Nitrogen-Availability Indices. In Methods of Soil Analysis Part 2 Rev Edn—Chemical and Microbiological Properties; Page, A.L., Ed.; Ameerican Society of Agronomy: Madison, WI, USA, 1982; pp. 711–733. [Google Scholar]
- Clark, J.D.; Fernández, F.G.; Veum, K.S.; Camberato, J.J.; Carter, P.R.; Ferguson, R.B.; Franzen, D.W.; Kaiser, D.E.; Kitchen, N.R.; Laboski, C.A.M.; et al. Predicting Economic Optimal Nitrogen Rate with the Anaerobic Potentially Mineralizable Nitrogen Test. Agron. J. 2019, 111, 3329–3338. [Google Scholar] [CrossRef] [Green Version]
- Yagi, R.; Ferreira, M.E.; da Cruz, M.C.P.; Barbosa, J.C. Mineralização Potencial e Líquida de Nitrogênio Em Solos. Rev. Bras. Cienc. Solo 2009, 33, 385–394. [Google Scholar] [CrossRef]
- Kuhnen, F.; Braos, L.B.; Ferreira, M.E.; da Cruz, M.C.P. Mineralization of C and N in Whey-Treated Soils and Absorption of N by Plants. J. Soil Sci. Plant Nutr. 2021, 21, 665–674. [Google Scholar] [CrossRef]
- Mulvaney, R.L.; Otto, R.; Griesheim, K.L.; Su, K.; Trivelin, P.C.O. Leaching Methods Can Underestimate Mineralization Potential of Soils. Commun. Soil Sci. Plant Anal. 2016, 47, 1701–1708. [Google Scholar] [CrossRef]
- Agehara, S.; Warncke, D.D. Soil Moisture and Temperature Effects on Nitrogen Release from Organic Nitrogen Sources. Soil Sci. Soc. Am. J. 2005, 69, 1844–1855. [Google Scholar] [CrossRef] [Green Version]
- CETESB. Lodo de Curtume: Critérios Para o Uso Em Áreas Agrícolas e Procedimentos Para Apresentação de Projetos; CETESB: São Paulo, Brazil, 1999.
- Braos, B.B.; Ferreira, M.E.; Cruz, M.C.P.D.; Braos, L.B.; Barbosa, J.C. Mild and Moderate Extraction Methods to Assess Potentially Available Soil Organic Nitrogen. Rev. Bras. Ciência Solo 2016, 40, e0151059. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, F.J. Nitrogen-Organic Forms. In Methods of Soil Analysis Part 3—Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1185–1200. [Google Scholar]
- Mulvaney, R.L.; Khan, S.A. Diffusion Methods to Determine Different Forms of Nitrogen in Soil Hydrolysates. Soil Sci. Soc. Am. J. 2001, 65, 1284–1292. [Google Scholar] [CrossRef]
- Mulvaney, R.L.; Khan, S.A.; Hoeft, R.G.; Brown, H.M. A Soil Organic Nitrogen Fraction That Reduces the Need for Nitrogen Fertilization. Soil Sci. Soc. Am. J. 2001, 65, 1164–1172. [Google Scholar] [CrossRef]
- Khan, S.A.; Mulvaney, R.L.; Hoeft, R.G. A Simple Soil Test for Detecting Sites That Are Nonresponsive to Nitrogen Fertilization. Soil Sci. Soc. Am. J. 2001, 65, 1751. [Google Scholar] [CrossRef]
- Mulvaney, R.L.; Khan, S.A.; Ellsworth, T.R. Need for a Soil-Based Approach in Managing Nitrogen Fertilizers for Profitable Corn Production. Soil Sci. Soc. Am. J. 2006, 70, 172–182. [Google Scholar] [CrossRef] [Green Version]
- Ruffo, M.L.; Bollero, G.A.; Bullock, D.S.; Bullock, D.G. Site-Specific Production Functions for Variable Rate Corn Nitrogen Fertilization. Precis. Agric. 2006, 7, 327–342. [Google Scholar] [CrossRef]
- Klapwyk, J.H.; Ketterings, Q.M. Soil Tests for Predicting Corn Response to Nitrogen Fertilizer in New York. Agron. J. 2006, 98, 675–681. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.D.; Crozier, C.R.; White, J.G.; Heiniger, R.W.; Sripada, R.P.; Crouse, D.A. Illinois Soil Nitrogen Test Predicts Southeastern U.S. Corn Economic Optimum Nitrogen Rates. Soil Sci. Soc. Am. J. 2007, 71, 735–744. [Google Scholar] [CrossRef]
- Williams, J.D.; Crozier, C.R.; White, J.G.; Sripada, R.P.; Crouse, D.A. Comparison of Soil Nitrogen Tests for Corn Fertilizer Recommendations in the Humid Southeastern USA. Soil Sci. Soc. Am. J. 2007, 71, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Maresma, A.; Ketterings, Q.M. In-Field Variability of the Illinois Soil Nitrogen Test and Loss-on-Ignition Results for Nitrogen Management. Soil Sci. Soc. Am. J. 2017, 81, 1211–1221. [Google Scholar] [CrossRef]
- Lawrence, J.R.; Ketterings, Q.M.; Goler, M.G.; Cherney, J.H.; Cox, W.J.; Czymmek, K.J. Illinois Soil Nitrogen Test with Organic Matter Correction for Predicting Nitrogen Responsiveness of Corn in Rotation. Soil Sci. Soc. Am. J. 2009, 73, 303–311. [Google Scholar] [CrossRef]
- Barker, D.W.; Sawyer, J.E.; Al-Kaisi, M.M.; Lundvall, J.P. Assessment of the Amino Sugar-Nitrogen Test on Iowa Soils: II. Field Correlation and Calibration. Agron. J. 2006, 98, 1352–1358. [Google Scholar] [CrossRef]
- Marriott, E.E.; Wander, M.M. Total and Labile Soil Organic Matter in Organic and Conventional Farming Systems. Soil Sci. Soc. Am. J. 2006, 70, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Laboski, C.A.M.; Sawyer, J.E.; Walters, D.T.; Bundy, L.G.; Hoeft, R.G.; Randall, G.W.; Andraski, T.W. Evaluation of the Illinois Soil Nitrogen Test in the North Central Region of the United States. Agron. J. 2008, 100, 1070–1076. [Google Scholar] [CrossRef] [Green Version]
- Osterhaus, J.T.; Bundy, L.G.; Andraski, T.W. Evaluation of the Illinois Soil Nitrogen Test for Predicting Corn Nitrogen Needs. Soil Sci. Soc. Am. J. 2008, 72, 143–150. [Google Scholar] [CrossRef]
- Spargo, J.T.; Alley, M.M.; Thomason, W.E.; Nagle, S.M. Illinois Soil Nitrogen Test for Prediction of Fertilizer Nitrogen Needs of Corn in Virginia. Soil Sci. Soc. Am. J. 2009, 73, 434–442. [Google Scholar] [CrossRef] [Green Version]
- Mariano, E.; Trivelin, P.C.O.; Montezano, Z.F.; Cantarella, H. Soil Nitrogen Availability Indices as Predictors of Sugarcane Nitrogen Requirements. Eur. J. Agron. 2017, 89, 25–37. [Google Scholar] [CrossRef]
- Dobereiner, J. Nitrogen-Fixing Bacteria of the Genus Beijerinckia Derx in the Rhizosphere of Sugar Cane. Plant Soil 1961, 15, 211–216. [Google Scholar] [CrossRef]
- Boddey, R.M.; Urquiaga, S.; Alves, B.J.R.; Reis, V. Endophytic Nitrogen Fixation in Sugarcane: Present Knowledge and Future Applications. Plant Soil 2003, 252, 139–149. [Google Scholar] [CrossRef]
- Patra, A.K.; Le Roux, X.; Abbadie, L.; Clays-Josserand, A.; Poly, F.; Loiseau, P.; Louault, F. Effect of Microbial Activity and Nitrogen Mineralization on Free-Living Nitrogen Fixation in Permanent Grassland Soils. J. Agron. Crop Sci. 2007, 193, 153–156. [Google Scholar] [CrossRef]
- Raij, B.V.; Andrade, J.C.; Cantarella, H.; Quaggio, J.A. Análise Química Para Avaliação da Fertilidade de Solos Tropiciais; Raij, B.V., Andrade, J.C.D., Cantarella, H., Quaggio, J.A., Eds.; Instituto Agronômico: Campinas, Brazil, 2001. [Google Scholar]
- Camargo, O.A.; Moniz, A.C.; Jorge, J.A.; Valadares, J.M.A.S. Métodos de Análise Química, Mineralógica e Física de Solos Do Instituto Agronômico de Campinas; Instituto Agronômico: Campinas, Brazil, 2009; Volume 106. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy by Soil Survey Staff, 12th ed.; U.S. Department of Agriculture (USDA): Washington, DC, USA, 2014; Volume 12, ISBN 0926487221.
- Stanford, G.; Smith, S.J. Nitrogen Mineralization Potentials of Soils. Soil Sci. Soc. Am. Proc. 1972, 36, 465–472. [Google Scholar] [CrossRef]
- Volpe, C.A.; Cargnelutti Filho, A.; Cardozo, N.P. Variabilidade Temporal e Espacial Da Temperatura Do Solo Sob Diferentes Coberturas Do Solo. In Proceedings of the Congresso Brasileiro de Biometeorologia, Ribeirão Preto, Brazil, 11 April 2006; p. 4. [Google Scholar]
- Cantarella, H.; Trivelin, P.C.O. Determinação de Nitrogênio Inorgânico Em Solo Pelo Método Da Destilação a Vapor. In Análise Química Para Avaliação da Fertilidade de Solos Tropicais; Raij, B.V., Cantarella, H., Quaggio, J.A., Eds.; Instituto Agronômico de Campinas: Campinas, Brazil, 2001; pp. 270–276. [Google Scholar]
- Lasdon, L.S.; Waren, A.D.; Jain, A.; Ratner, M. Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming. ACM Trans. Math. Softw. 1978, 4, 34–50. [Google Scholar] [CrossRef]
- Tedesco, M.; Gianello, C.; Bissani, C. Análises de Solo, Plantas e Outros Materiais; UFRGS: Proto Alegre, Brazil, 1995. [Google Scholar]
- Ullah Sarkar, M.I.; Rahman, M.M.; Rahman, G.K.M.M.; Naher, U.A.; Ahmed, M.N. Soil Test Based Inorganic Fertilizer and Integrated Plant Nutrition System for Rice (Oryza Sativa L.) Cultivation in Inceptisols of Bangladesh. Agric. 2016, 14, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.J.; Smith, C.J.; Chen, D. Towards a Standardised Procedure for Determining the Potentially Mineralisable Nitrogen of Soil. Biol. Fertil. Soils 2003, 37, 362–374. [Google Scholar] [CrossRef]
- Braos, L.B.; Ruiz, J.G.C.L.; Lopes, I.G.; Ferreira, M.E.; da Cruz, M.C.P. Mineralization of Nitrogen in Soils with Application of Acid Whey at Different PH. J. Soil Sci. Plant Nutr. 2020, 20, 1102–1108. [Google Scholar] [CrossRef]
- Lopes, I.G.; Braos, L.B.; Cruz, M.C.P.; Vidotti, R.M. Valorization of Animal Waste from Aquaculture through Composting: Nutrient Recovery and Nitrogen Mineralization. Aquaculture 2021, 531, 735859. [Google Scholar] [CrossRef]
- Stanford, G.; Frere, N.H.; Schwaninger, D.H. Temperature Coefficient of Soil Nitrogen Mineralization. Soil Sci. 1973, 115, 321–323. [Google Scholar] [CrossRef]
- Gao, H.; Bai, J.; He, X.; Zhao, Q.; Lu, Q.; Wang, J. High Temperature and Salinity Enhance Soil Nitrogen Mineralization in a Tidal Freshwater Marsh. PLoS ONE 2014, 9, e95011. [Google Scholar] [CrossRef]
- Cabrera, M.L.; Kissel, D.E. Evaluation of a Method to Predict Nitrogen Mineralized from Soil Organic Matter Under Field Conditions. Soil Sci. Soc. Am. J. 1988, 52, 1027–1031. [Google Scholar] [CrossRef]
- Honeycutt, C.W. Nitrogen Mineralization from Soil Organic Matter and Crop Residues: Field Validation of Laboratory Predictions. Soil Sci. Soc. Am. J. 1999, 63, 134–141. [Google Scholar] [CrossRef]
- Zou, C.; Pearce, R.C.; Grove, J.H.; Coyne, M.S. Laboratory vs. in Situ Resin-Core Methods to Estimate Net Nitrogen Mineralization for Comparison of Rotation and Tillage Practices. J. Plant Nutr. Soil Sci. 2017, 180, 294–301. [Google Scholar] [CrossRef]
- Mohapatra, S.P. Fractions of Soil Nitrogen during Different Periods of Submergence and Their Effects on Yield and Nutrition of Wetland Rice (Oryza Sativa L.). Biol. Fertil. Soils 1988, 6, 45–49. [Google Scholar] [CrossRef]
- Sarawad, I.M.; Singh, D.; Rana, D.S.; Kumar, K.; Singh, D. Nitrogen Fractions and Their Relationships with Mineralizable N and Its Uptake by Crops in a Long-Term Fertilizer Experiment. J. indian Soc. Soil Sci. 2001, 49, 691–694. [Google Scholar]
- Jumei, L.; Shengxiu, L. Relation of Mineralizable N to Organic N Components in Dark Loessial Soils. Pedosphere 2003, 13, 279–288. [Google Scholar]
- Li, L.L.; Li, S. tian Nitrogen Mineralization from Animal Manures and Its Relation to Organic N Fractions. J. Integr. Agric. 2014, 13, 2040–2048. [Google Scholar] [CrossRef]
- Reddy, K.S.; Singh, M.; Tripathi, A.K.; Singh, M.; Saha, M.N. Changes in Amount of Organic and Inorganic Fractions of Nitrogen in an Eutrochrept Soil after Long-Term Cropping with Different Fertilizer and Organic Manure Inputs. J. Plant Nutr. Soil Sci. 2003, 166, 232–238. [Google Scholar] [CrossRef]
- Reddy, K.S.; Singh, W.A.R.M.; Tripathi, A.K.; Rao, A.S.; Sudhir, K. Contents and Depth Distribution of Nitrogen Fractions in a Kandic Paleustalf Soil Following Long-Term Cropping with Fertilizer and Farmyard Manure Applications. Agrochimica 2008, 52, 337–351. [Google Scholar]
- Wang, S.; Jin, X.; Niu, D.; Wu, F. Potentially Mineralizable Nitrogen in Sediments of the Shallow Lakes in the Middle and Lower Reaches of the Yangtze River Area in China. Appl. Geochem. 2009, 24, 1788–1792. [Google Scholar] [CrossRef]
- Pinggera, J.; Geisseler, D.; Piepho, H.P.; Joergensen, R.G.; Ludwig, B. Effect of Substrate Quality on the N Uptake Routes of Soil Microorganisms in Different Soil Depths. Pedobiologia 2015, 58, 211–218. [Google Scholar] [CrossRef]
- Bushong, J.T.; Norman, R.J.; Ross, W.J.; Slaton, N.A.; Wilson, C.E.; Gbur, E.E. Evaluation of Several Indices of Potentially Mineralizable Soil Nitrogen. Commun. Soil Sci. Plant Anal. 2007, 38, 2799–2813. [Google Scholar] [CrossRef]
- Bushong, J.T.; Roberts, T.L.; Ross, W.J.; Norman, R.J.; Slaton, N.A.; Wilson, C.E. Evaluation of Distillation and Diffusion Techniques for Estimating Hydrolyzable Amino Sugar-Nitrogen as a Means of Predicting Nitrogen Mineralization. Soil Sci. Soc. Am. J. 2008, 72, 992–999. [Google Scholar] [CrossRef]
- Sharifi, M.; Zebarth, B.J.; Burton, D.L.; Grant, C.A.; Cooper, J.M. Evaluation of Some Indices of Potentially Mineralizable Nitrogen in Soil. Soil Sci. Soc. Am. J. 2007, 71, 1233–1239. [Google Scholar] [CrossRef]
- McDonald, N.T.; Watson, C.J.; Lalor, S.T.J.; Laughlin, R.J.; Wall, D.P. Evaluation of Soil Tests for Predicting Nitrogen Mineralization in Temperate Grassland Soils. Soil Sci. Soc. Am. J. 2014, 78, 1051–1064. [Google Scholar] [CrossRef] [Green Version]
- Rogers, C.W.; Schroeder, K.; Rashed, A.; Roberts, T.L. Evaluation of Soil Tests for Measuring Potentially Mineralizable Soil N in Southern Idaho Soils. Soil Sci. Soc. Am. J. 2018, 82, 1279–1289. [Google Scholar] [CrossRef] [Green Version]
- Allen, D.E.; Bloesch, P.M.; Orton, T.G.; Schroeder, B.L.; Skocaj, D.M.; Wang, W.; Masters, B.; Moody, P.M. Nitrogen Mineralisation in Sugarcane Soils in Queensland, Australia: I. Evaluation of Soil Tests for Predicting Nitrogen Mineralisation. Soil Res. 2019, 57, 738–752. [Google Scholar] [CrossRef]
- Roberts, T.L.; Norman, R.J.; Slaton, N.A.; Wilson, C.E. Changes in Alkaline Hydrolyzable Nitrogen Distribution with Soil Depth: Fertilizer Correlation and Calibration Implications. Soil Sci. Soc. Am. J. 2009, 73, 2151–2158. [Google Scholar] [CrossRef]
- Roberts, T.L.; Norman, R.J.; Slaton, N.A.; Wilson, C.E.; Ross, W.J.; Bushong, J.T. Direct Steam Distillation as an Alternative to the Illinois Soil Nitrogen Test. Soil Sci. Soc. Am. J. 2009, 73, 1268–1275. [Google Scholar] [CrossRef]
Soil | Vegetation | Collection Site | |
---|---|---|---|
No. | Order a | ||
1 | Oxisols | Native forest | Farm Lago Azul, Morro Agudo, São Paulo, Brazil |
2 | Oxisols | Grazing pasture | Farm Lago Azul, Morro Agudo, São Paulo, Brazil |
3 | Oxisols | Grazing pasture | Farm NS. Aparecida, Jaboticabal, São Paulo, Brazil |
4 | Oxisols | Pine tree forest | UNESP, Jaboticabal, São Paulo, Brazil |
5 | Ultisols | Native forest | ITES, Taquaritinga, São Paulo, Brazil |
6 | Oxisols | Organic sugarcane | Farm NS. Aparecida, Jaboticabal, São Paulo, Brazil |
7 | Ultisols | Maize crop | IAC, Pindorama, São Paulo, Brazil |
8 | Oxisols | Eucalyptus forest | UNESP, Jaboticabal, São Paulo, Brazil |
9 | Oxisols | Sugarcane crop | Farm Boa Esperança, Barrinha, São Paulo, Brazil |
10 | Ultisols | Native forest | IAC, Pindorama, São Paulo, Brazil |
11 | Entisols | Grazing pasture | Highway SP-323, Monte Alto, São Paulo, Brazil |
12 | Ultisols | Guava orchard | IAC, Pindorama, São Paulo, Brazil |
13 | Oxisols | Pine tree forest | UNESP, Jaboticabal, São Paulo, Brazil |
14 | Oxisols | Sugarcane crop | UNESP, Jaboticabal, São Paulo, Brazil |
15 | Ultisols | Eucalyptus forest | Highway SP-323, Monte Alto, São Paulo, Brazil |
16 | Ultisols | Rubber tree forest | IAC, Pindorama, São Paulo, Brazil |
17 | Ultisols | Citrus orchard | Farm Santa Luzia, Taquaritinga, São Paulo, Brazil |
Soil no. | pH a | OM b (g kg−1) | Resin P c (mg kg−1) | K+ d (mmol kg−1) | Ca2+ d (mmol kg−1) | Mg2+ d (mmol kg−1) | H+Al (mmol kg−1) | CEC e (mmol kg−1) | SO42− (mg kg−1) | B (mg kg−1) | Cu (mg kg−1) | Fe (mg kg−1) | Mn (mg kg−1) | Zn (mg kg−1) | Bulk Density (Mg m−3) | Sand (g kg−1) | Silt (g kg−1) | Clay (g kg−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5.5 | 93.8 | 18 | 4.0 | 91 | 40 | 48 | 183 | 8.8 | 0.54 | 12.0 | 49 | 231.5 | 2.4 | 1.25 | 390 | 140 | 470 |
2 | 5.6 | 75.6 | 13 | 4.0 | 53 | 24 | 37 | 118 | 4.8 | 0.41 | 9.5 | 25 | 94.7 | 1.1 | 1.20 | 280 | 160 | 560 |
3 | 5.2 | 56.0 | 24 | 5.6 | 47 | 17 | 53 | 122 | 5.6 | 0.41 | 7.4 | 30 | 109.5 | 2.1 | 1.12 | 170 | 130 | 700 |
4 | 4.4 | 54.4 | 15 | 2.2 | 22 | 5 | 71 | 101 | 6.8 | 0.46 | 1.8 | 78 | 80.4 | 2.2 | 1.36 | 720 | 50 | 230 |
5 | 5.1 | 48.6 | 14 | 3.4 | 53 | 12 | 38 | 107 | 0 | 0.27 | 1.1 | 136 | 100.7 | 4.3 | 1.35 | 860 | 40 | 100 |
6 | 5.3 | 45.5 | 88 | 5.3 | 43 | 14 | 40 | 103 | 5.2 | 0.44 | 2.2 | 43 | 24.8 | 2.0 | 1.30 | 590 | 30 | 380 |
7 | 5.7 | 43.9 | 164 | 4.5 | 55 | 20 | 27 | 105 | 8.0 | 0.45 | 2.0 | 110 | 14.0 | 19.2 | 1.33 | 810 | 70 | 120 |
8 | 4.9 | 41.9 | 10 | 2.4 | 27 | 9 | 43 | 81 | 6.4 | 0.36 | 0.9 | 57 | 55.0 | 0.8 | 1.27 | 720 | 20 | 260 |
9 | 5.1 | 40.6 | 22 | 6.2 | 30 | 15 | 43 | 95 | 7.6 | 0.19 | 5.3 | 51 | 21.0 | 0.6 | 1.27 | 570 | 50 | 380 |
10 | 4.3 | 37.2 | 7 | 3.6 | 19 | 12 | 64 | 99 | 6.2 | 0.48 | 0.9 | 47 | 30.3 | 1.2 | 1.24 | 740 | 50 | 210 |
11 | 4.8 | 35.9 | 7 | 3.1 | 24 | 12 | 41 | 80 | 0 | 0.29 | 1.3 | 84 | 23.0 | 1.6 | 1.33 | 750 | 70 | 180 |
12 | 4.8 | 32.4 | 18 | 4.8 | 23 | 10 | 44 | 80 | 5.6 | 0.28 | 1.6 | 61 | 31.3 | 1.3 | 1.41 | 860 | 40 | 100 |
13 | 4.9 | 29.4 | 19 | 3.3 | 23 | 13 | 40 | 79 | 5.1 | 0.36 | 1.5 | 28 | 37.2 | 0.8 | 1.28 | 590 | 10 | 400 |
14 | 4.8 | 28.6 | 95 | 2.7 | 23 | 5 | 49 | 81 | 6.5 | 0.20 | 2.7 | 30 | 15.3 | 1.2 | 1.30 | 660 | 40 | 300 |
15 | 5.1 | 29.4 | 7 | 3.9 | 28 | 8 | 31 | 71 | 0 | 0.31 | 0.6 | 34 | 55.3 | 0.6 | 1.40 | 850 | 30 | 120 |
16 | 5.2 | 19.6 | 21 | 2.0 | 26 | 5 | 27 | 59 | 4.5 | 0.41 | 1.1 | 23 | 47.4 | 2.1 | 1.51 | 900 | 30 | 70 |
17 | 5.1 | 13.4 | 36 | 2.5 | 13 | 6 | 24 | 46 | 0 | 0.15 | 1.2 | 34 | 18.2 | 1.0 | 1.49 | 870 | 40 | 90 |
Soil | 18/23 °C b | 23/28 °C b | 28 °C b | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
no. | N0 | k | R2 | N0 | k | R2 | N0 | k | R2 | ||
(mg kg−1) | (d−1) | (mg kg−1) | (d−1) | (mg kg−1) | (d−1) | ||||||
1 | 126 | 0.062 | 0.97 ** | 232 | 0.028 | 0.97 ** | 157 | 0.050 | 0.98 ** | ||
2 | 70 | 0.041 | 0.96 ** | 152 | 0.018 | 0.98 ** | 97 | 0.029 | 0.98 ** | ||
3 | 87 | 0.022 | 0.99 ** | 196 | 0.012 | 0.99 ** | 120 | 0.022 | 0.99 ** | ||
4 | 48 | 0.042 | 0.97 ** | 89 | 0.022 | 0.98 ** | 66 | 0.033 | 0.99 ** | ||
5 | 66 | 0.052 | 0.96 ** | 132 | 0.020 | 0.98 ** | 93 | 0.044 | 0.98 ** | ||
6 | 34 | 0.031 | 0.99 ** | 85 | 0.016 | 0.99 ** | 51 | 0.024 | 0.99 ** | ||
7 | 53 | 0.027 | 0.99 ** | 118 | 0.015 | 0.99 ** | 72 | 0.023 | 0.99 ** | ||
8 | 53 | 0.025 | 0.99 ** | 129 | 0.015 | 0.99 ** | 79 | 0.024 | 0.99 ** | ||
9 | 45 | 0.025 | 0.99 ** | 95 | 0.017 | 0.99 ** | 61 | 0.023 | 0.99 ** | ||
10 | 69 | 0.047 | 0.97 ** | 122 | 0.026 | 0.98 ** | 95 | 0.041 | 0.98 ** | ||
11 | 46 | 0.039 | 0.97 ** | 88 | 0.019 | 0.98 ** | 62 | 0.033 | 0.98 ** | ||
12 | 41 | 0.021 | 0.99 ** | 104 | 0.012 | 0.99 ** | 57 | 0.021 | 0.99 ** | ||
13 | 40 | 0.020 | 0.99 ** | 81 | 0.015 | 0.99 ** | 50 | 0.020 | 0.99 ** | ||
14 | 31 | 0.020 | 0.99 ** | 71 | 0.018 | 0.99 ** | 41 | 0.020 | 0.99 ** | ||
15 | 29 | 0.037 | 0.97 ** | 64 | 0.021 | 0.99 ** | 44 | 0.029 | 0.99 ** | ||
16 | 26 | 0.027 | 0.97 ** | 57 | 0.017 | 0.99 ** | 39 | 0.025 | 0.99 ** | ||
17 | 24 | 0.020 | 0.99 ** | 56 | 0.017 | 0.99 ** | 36 | 0.026 | 0.99 ** |
Soil | Form of N Determined | Total | ISNT-N | |||||
---|---|---|---|---|---|---|---|---|
no. | Total Hydrolysable | NH4+ | Amino Sugar a | Amino Acid | HUN b | Acid-insoluble | Kjeldahl N | |
1 | 2069 ± 64 | 368 ± 4 | 572 ± 46 | 688 ± 1 | 441 ± 91 | 1099 ± 32 | 3167 ± 157 | 616 ± 3 |
2 | 1578 ± 81 | 261 ± 13 | 442 ± 31 | 499 ± 5 | 376 ± 97 | 909 ± 41 | 2487 ± 166 | 407 ± 6 |
3 | 1585 ± 121 | 226 ± 6 | 501 ± 33 | 412 ± 106 | 446 ± 137 | 1303 ± 60 | 2888 ± 211 | 362 ± 6 |
4 | 703 ± 58 | 194 ± 12 | 102 ± 18 | 251 ± 5 | 156 ± 44 | 224 ± 29 | 928 ± 98 | 163 ± 7 |
5 | 879 ± 262 | 164 ± 9 | 153 ± 97 | 319 ± 80 | 243 ± 81 | 228 ± 82 | 1106 ± 77 | 198 ± 5 |
6 | 793 ± 177 | 219 ± 12 | 127 ± 16 | 283 ± 10 | 164 ± 98 | 438 ± 88 | 1231 ± 75 | 154 ± 6 |
7 | 875 ± 62 | 241 ± 12 | 119 ± 20 | 350 ± 13 | 165 ± 40 | 268 ± 31 | 1143 ± 69 | 160 ± 4 |
8 | 840 ± 9 | 198 ± 14 | 111 ± 21 | 307 ± 25 | 224 ± 24 | 230 ± 4 | 1069 ± 65 | 151 ± 7 |
9 | 714 ± 155 | 168 ± 22 | 134 ± 13 | 286 ± 10 | 126 ± 39 | 279 ± 77 | 993 ± 97 | 163 ± 2 |
10 | 863 ± 156 | 255 ± 18 | 111 ± 33 | 331 ± 12 | 166 ± 26 | 241 ± 72 | 1104 ± 45 | 216 ± 2 |
11 | 690 ± 44 | 183 ± 3 | 124 ± 19 | 273 ± 24 | 110 ± 15 | 168 ± 22 | 858 ± 43 | 142 ± 6 |
12 | 571 ± 28 | 174 ± 2 | 57 ± 24 | 238 ± 5 | 102 ± 32 | 179 ± 14 | 750 ± 38 | 95 ± 3 |
13 | 485 ± 32 | 151 ± 5 | 88 ± 11 | 186 ± 21 | 60 ± 24 | 228 ± 16 | 713 ± 41 | 115 ± 1 |
14 | 464 ± 91 | 140 ± 6 | 83 ± 19 | 176 ± 43 | 65 ± 54 | 265 ± 45 | 728 ± 26 | 99 ± 5 |
15 | 496 ± 79 | 139 ± 7 | 82 ± 13 | 184 ± 15 | 91 ± 64 | 140 ± 39 | 636 ± 18 | 116 ± 2 |
16 | 331 ± 80 | 110 ± 2 | 42 ± 12 | 127 ± 13 | 52 ± 23 | 147 ± 40 | 478 ± 17 | 77 ± 3 |
17 | 248 ± 30 | 60 ± 4 | 65 ± 22 | 115 ± 11 | 8 ± 7 | 108 ± 15 | 356 ± 12 | 54 ± 1 |
LSD c | 207 | 20 | 62 | 68 | 119 | 91 | 173 | 9 |
Soil | Dry Matter | N Concentration | N Uptake |
---|---|---|---|
no. | (g pot−1) | (g kg−1) | (g pot−1) |
1 | 73.3 ± 2.3 | 13.5 ± 0.8 | 0.986 ± 0.035 |
2 | 57.6 ± 5.8 | 10.6 ± 1.3 | 0.604 ± 0.018 |
3 | 41.1 ± 3.0 | 8.7 ± 0.4 | 0.358 ± 0.033 |
4 | 40.9 ± 2.1 | 7.6 ± 0.1 | 0.313 ± 0.021 |
5 | 52.7 ± 3.5 | 8.0 ± 1.2 | 0.422 ± 0.057 |
6 | 29.8 ± 1.3 | 6.7 ± 0.7 | 0.200 ± 0.020 |
7 | 48.6 ± 1.7 | 7.4 ± 0.4 | 0.357 ± 0.022 |
8 | 37.9 ± 1.7 | 7.6 ± 0.2 | 0.288 ± 0.014 |
9 | 25.6 ± 2.6 | 7.7 ± 1.3 | 0.195 ± 0.015 |
10 | 49.8 ± 2.4 | 9.3 ± 1.4 | 0.463 ± 0.075 |
11 | 26.3 ± 1.8 | 5.8 ± 0.6 | 0.153 ± 0.020 |
12 | 31.7 ± 0.6 | 6.0 ± 0.3 | 0.192 ± 0.013 |
13 | 29.0 ± 1.0 | 5.6 ± 0.4 | 0.164 ± 0.009 |
14 | 11.0 ± 0.8 | 6.0 ± 0.5 | 0.067 ± 0.009 |
15 | 29.1 ± 1.2 | 7.0 ± 1.0 | 0.203 ± 0.021 |
16 | 28.4 ± 1.3 | 6.1 ± 0.9 | 0.174 ± 0.019 |
17 | 12.7 ± 0.3 | 5.4 ± 0.7 | 0.069 ± 0.008 |
LSD a | 4.4 | 1.5 | 0.055 |
DM a | N Uptake | N0 b | N0 b | N0 b | OM c | Total N | Clay | ISNT-N | |
---|---|---|---|---|---|---|---|---|---|
18/23 °C | 23/28 °C | 28 °C | |||||||
N0 18/23 °C b | 0.86 ** | 0.92 ** | 1 | ||||||
N0 23/28 °C b | 0.82 ** | 0.87 ** | 0.97 ** | 1 | |||||
N0 28 °C b | 0.87 ** | 0.91 ** | 0.99 ** | 0.98 ** | 1 | ||||
OM c | 0.83 ** | 0.89 ** | 0.89 ** | 0.89 ** | 0.89 ** | 1 | |||
Total N | 0.62 ** | 0.68 ** | 0.74 ** | 0.78 ** | 0.74 ** | 0.76 ** | 1 | ||
Clay | 0.32ns | 0.42ns | 0.57 * | 0.63 ** | 0.56 * | 0.70 ** | 0.66 ** | 1 | |
ISNT-N | 0.82 ** | 0.93 ** | 0.94 ** | 0.92 ** | 0.93 ** | 0.95 ** | 0.76 ** | 0.68 ** | 1 |
NH4+-N | 0.85 ** | 0.88 ** | 0.86 ** | 0.84 ** | 0.86 ** | 0.89 ** | 0.87 ** | 0.53 * | 0.86 ** |
AS-N d | 0.69 ** | 0.80 ** | 0.87 ** | 0.90 ** | 0.87 ** | 0.90 ** | 0.72 ** | 0.79 ** | 0.95 ** |
AA-N e | 0.87 ** | 0.93 ** | 0.94 ** | 0.94 ** | 0.94 ** | 0.96 ** | 0.84 ** | 0.60 * | 0.96 ** |
HUN f | 0.80 ** | 0.82 ** | 0.90 ** | 0.95 ** | 0.92 ** | 0.93 ** | 0.75 ** | 0.72 ** | 0.91 ** |
AI-N g | 0.58 * | 0.68 ** | 0.79 ** | 0.85 ** | 0.80 ** | 0.84 ** | 0.72 ** | 0.86 ** | 0.88 ** |
THNh | 0.74 ** | 0.82 ** | 0.90 ** | 0.94 ** | 0.90 ** | 0.95 ** | 0.80 ** | 0.80 ** | 0.98 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braos, L.B.; Carlos, R.S.; Kuhnen, F.; Ferreira, M.E.; Mulvaney, R.L.; Khan, S.A.; Cruz, M.C.P.d. Predicting Soil Nitrogen Availability for Maize Production in Brazil. Nitrogen 2022, 3, 555-568. https://doi.org/10.3390/nitrogen3040036
Braos LB, Carlos RS, Kuhnen F, Ferreira ME, Mulvaney RL, Khan SA, Cruz MCPd. Predicting Soil Nitrogen Availability for Maize Production in Brazil. Nitrogen. 2022; 3(4):555-568. https://doi.org/10.3390/nitrogen3040036
Chicago/Turabian StyleBraos, Lucas Boscov, Roberta Souto Carlos, Fernando Kuhnen, Manoel Evaristo Ferreira, Richard Lesley Mulvaney, Saeed Ahmad Khan, and Mara Cristina Pessôa da Cruz. 2022. "Predicting Soil Nitrogen Availability for Maize Production in Brazil" Nitrogen 3, no. 4: 555-568. https://doi.org/10.3390/nitrogen3040036
APA StyleBraos, L. B., Carlos, R. S., Kuhnen, F., Ferreira, M. E., Mulvaney, R. L., Khan, S. A., & Cruz, M. C. P. d. (2022). Predicting Soil Nitrogen Availability for Maize Production in Brazil. Nitrogen, 3(4), 555-568. https://doi.org/10.3390/nitrogen3040036