Comparison of Nitrogen Treatment by Four Onsite Wastewater Systems in Nutrient-Sensitive Watersheds of the North Carolina Coastal Plain
Abstract
:1. Introduction
1.1. Nitrogen and Environmental Health
1.2. Wastewater as a Nitrogen Source
1.3. Onsite Wastewater Systems and Nitrogen Treatment
1.4. Research Needs
2. Materials and Methods
2.1. Site Selection
2.2. Monitoring Well Installations
2.3. Water Sampling and Analyses
2.4. Statistical Analyses
3. Results and Discussion
3.1. Nitrogen Treatment
3.2. Nitrogen Speciation and Transformations in Septic Tanks
3.3. Nitrogen Speciation and Transformations in Groundwater Near the OWS
3.4. Physicochemical Properties of Water
3.4.1. pH
3.4.2. Specific Conductance
3.4.3. Dissolved Oxygen
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Havlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers, 6th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999; pp. 86–153. [Google Scholar]
- Paerl, H.W.; Rossignol, K.L.; Guajardo, R.; Hall, N.S.; Joyner, A.R.; Peierls, B.L.; Ramus, J.S. FerryMon: Ferry-based monitoring and assessment of human and climatically driven environmental change in the Albemarle-Pamlico Sound system. Environ. Sci. Technol. 2009, 43, 7609–7613. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Albaugh, T.J.; Fox, T.R.; Cook, R.L.; Raymond, J.E.; Rubilar, R.A.; Campoe, O.C. Forest fertilizer applications in the southeastern United States from 1969 to 2016. Forest Sci. 2019, 65, 355–362. [Google Scholar] [CrossRef]
- Cleland, J. World population growth; past, present and future. Environ. Resour. Econ. 2013, 55, 543–554. [Google Scholar] [CrossRef]
- Lowe, K.S.; Tucholke, M.B.; Tomaras, J.M.; Conn, K.; Hoppe, C.; Drewes, J.E.; McCray, J.E.; Munakata-Marr, J. Influent Constituent Characteristics of the Modern Waste Stream from Single Sources; IWA Publishing: London, UK, 2010. [Google Scholar]
- Brooks, B.W.; Lazorchak, J.M.; Howard, M.D.; Johnson, M.-V.V.; Morton, S.L.; Perkins, D.A.; Reavie, E.D.; Scott, G.I.; Smith, S.A.; Steevens, J. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ. Toxicol. Chem. 2016, 35, 6–13. [Google Scholar] [CrossRef]
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. ECOLOGY: Controlling eutrophication: Nitrogen and phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef]
- Dodds, W.K.; Bouska, K.; Eitzmann, J.L.; Pilger, T.J.; Pitts, K.L.; Riley, A.J.; Schloesser, J.T.; Thornbrugh, D.J. Eutrophication of U.S. freshwaters: Analysis of potential economic damages. Environ. Sci. Technol. 2009, 43, 12–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeq, M.; Moe, C.L.; Attarassi, B.; Cherkaoui, I.; ElAouad, R.; Idrissi, L. Drinking water nitrate and prevalence of methemoglobinemia among infants and children aged 1–7 years in Moroccan areas. Int. J. Hyg. Environ. Health 2008, 211, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.H.; Jones, R.R.; Brender, J.D.; De Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; Van Breda, S.G. Drinking water nitrate and human health: An updated review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- North Carolina Department of Environmental Quality. Neuse River Nutrient Strategy. 2021. Available online: https://deq.nc.gov/about/divisions/water-resources/planning/nonpoint-source-management/nutrient-strategies/neuse (accessed on 15 May 2021).
- US EPA. Onsite Wastewater Treatment Systems Manual. 2002. Available online: https://www.epa.gov/sites/production/files/2015-06/documents/2004_07_07_septics_septic_2002_osdm_all.pdf (accessed on 6 April 2021).
- Iverson, G.; O’Driscoll, M.; Humphrey Jr, C.; Manda, A.; Anderson-Evans, E. Wastewater nitrogen contributions to coastal plain watersheds, NC, USA. Water Air Soil Pollut. 2015, 226, 1–17. [Google Scholar] [CrossRef]
- Cox, A.H.; Loomis, G.W.; Amador, J.A. Preliminary evidence that rising groundwater tables threaten coastal septic systems. J. Sustain. Water Built Environ. 2019, 5, 04019007. [Google Scholar] [CrossRef]
- Humphrey, C.P.; Anderson-Evans, E.; O’Driscoll, M.; Manda, A.; Iverson, G. Comparison of phosphorus concentrations in coastal plain watersheds served by onsite wastewater treatment systems and a municipal sewer treatment system. Water Air Soil Pollut. 2015, 226, 1–18. [Google Scholar] [CrossRef]
- Naylor, E.; Humphrey, C.; Easter, L.; Iverson, G. Evaluation of nitrate concentrations and potential sources of nitrate in private water supply wells in North Carolina. J. Environ. Health 2018, 80, 16–23. [Google Scholar]
- Lindbo, D.; Godfrey, J.; Rashash, D. Why Do Septic Systems Fail? 2021. Available online: https://content.ces.ncsu.edu/why-do-septic-systems-fail (accessed on 15 May 2021).
- Nasr, F.A.; Mikhaeil, B. Treatment of domestic wastewater using conventional and baffled septic tanks. Environ. Technol. 2013, 34, 2337–2343. [Google Scholar] [CrossRef] [PubMed]
- Bunnell, J.; Zampella, R.; Morgan, M.; Gray, D. A comparison of nitrogen removal by subsurface pressure dosing and standard septic systems in sandy soils. J. Environ. Manag. 1999, 56, 209–219. [Google Scholar] [CrossRef]
- Lusk, M.G.; Toor, G.S.; Yang, Y.-Y.; Mechtensimer, S.; De, M.; Obreza, T.A. A review of the fate and transport of nitrogen, phosphorus, pathogens, and trace organic chemicals in septic systems. Crit. Rev. Environ. Sci. Technol. 2017, 47, 455–541. [Google Scholar] [CrossRef]
- Carr, M.E.; Jumper, D.L.; Yelderman, J.C. A comparison of disposal methods for on-site sewage facilities within the state of Texas, USA. Environmentalist 2009, 29, 381–387. [Google Scholar] [CrossRef]
- De, M.; Toor, G.S. Fate of effluent-borne nitrogen in the mounded drainfield of an onsite wastewater treatment system. Vadose Zone J. 2015, 14, 1–12. [Google Scholar] [CrossRef]
- De, M.; Toor, G.S. Nitrogen transformations in the mounded drainfields of drip dispersal and gravel trench septic systems. Ecol. Eng. 2017, 102, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, C.P.; O’Driscoll, M.A.; Zarate, M.A. Controls on groundwater nitrogen contributions from on-site wastewater systems in coastal North Carolina. Water Sci. Technol. 2010, 62, 1448–1455. [Google Scholar] [CrossRef]
- Chatterjee, A. Extent and variation of nitrogen losses from non-legume field crops of conterminous United States. Nitrogen 2020, 1, 5. [Google Scholar] [CrossRef]
- O’Driscoll, M.A.; Humphrey, C.P.; Deal, N.E.; Lindbo, D.L.; Zarate-Bermudez, M.A. Meteorological influences on nitrogen dynamics of a coastal onsite wastewater treatment system. J. Environ. Qual. 2014, 43, 1873–1885. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.A.; Morales, I.; Amador, J.A. Nitrogen transformations in different types of soil treatment areas receiving domestic wastewater. Ecol. Eng. 2016, 94, 22–29. [Google Scholar] [CrossRef]
- Del Rosario, K.L.; Humphrey, C.P.; Mitra, S.; O’Driscoll, M.A. Nitrogen and carbon dynamics beneath on-site wastewater treatment systems in Pitt County, North Carolina. Water Sci. Technol. 2013, 69, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, C.; O’Driscoll, M.A.; Armstrong, M.C. Onsite wastewater system nitrogen loading to groundwater in the Newport River watershed, North Carolina. Environ. Nat. Resour. Res. 2012, 2, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Gill, L.W.; O’Suilleabhain, C.; Misstear, B.; Johnston, P.; Patel, T.; O’Luanaigh, N. Nitrogen loading on groundwater from the discharge of on-site domestic wastewater effluent into different subsoils in Ireland. Water Sci. Technol. 2008, 57, 1921–1926. [Google Scholar] [CrossRef] [PubMed]
- Gill, L.; O’Luanaigh, N.; Johnston, P.; Misstear, B.; O’Suilleabhain, C. Nutrient loading on subsoils from on-site wastewater effluent, comparing septic tank and secondary treatment systems. Water Res. 2009, 43, 2739–2749. [Google Scholar] [CrossRef]
- Humphrey, C.P.; O’Driscoll, M.A.; Deal, N.E.; Lindbo, D.L.; Thieme, S.C.; Zarate-Bermudez, M.A. Onsite wastewater system nitrogen contributions to groundwater in coastal North Carolina. J. Environ. Health 2013, 76, 16–23. [Google Scholar]
- Postma, F.B.; Gold, A.J.; Loomis, G.W. Nutrient and microbial movement from seasonally-used septic systems. J. Environ. Health 1992, 55, 5–10. [Google Scholar]
- Cogger, C.G.; Carlile, B.L. Field performance of conventional and alternative septic systems in wet soils. J. Environ. Qual. 1984, 13, 137–142. [Google Scholar] [CrossRef]
- Humphrey, C.P.; Jernigan, J.; Iverson, G.; Serozi, B.; O’Driscoll, M.; Pradhan, S.; Bean, E. Field evaluation of nitrogen treatment by conventional and single-pass sand filter onsite wastewater systems in the North Carolina piedmont. Water Air Soil Pollut. 2016, 227, 1–17. [Google Scholar] [CrossRef]
- Hoover, M.T.; Disy, T.A.; Pfieffer, M.A.; Dudley, N.; Mayer, R.B.; Buffington, B. North Carolina Subsurface Wastewater Operators Training School Manual, 1st ed.; North Carolina State University & North Carolina Department of Environment, Health and Natural Resources: Raleigh, NC, USA, 1996; pp. 4.1–4.31. [Google Scholar]
- Beal, C.; Gardner, E.; Kirchhof, G.; Menzies, N. Long-term flow rates and biomat zone hydrology in soil columns receiving septic tank effluent. Water Res. 2006, 40, 2327–2338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, W.D.; Van Stempvoort, D.R.; Schiff, S.L. Nitrogen attenuation in septic system plumes. Groundwater 2021, 59, 369–380. [Google Scholar] [CrossRef]
- Robertson, W.D.; Cherry, J.A.; Sudicky, E.A. Ground-water contamination from two small septic systems on sand aquifers. Groundwater 1991, 29, 82–92. [Google Scholar] [CrossRef]
- Geary, P.; Lucas, S. Contamination of estuaries from failing septic tank systems: Difficulties in scaling up from monitored individual systems to cumulative impact. Environ. Sci. Pollut. Res. 2018, 26, 2132–2144. [Google Scholar] [CrossRef]
- O’Driscoll, M.; Johnson, P.; Mallinson, D. Geological controls and effects of floodplain asymmetry on river–groundwater interactions in the southeastern Coastal Plain, USA. Hydrogeol. J. 2010, 18, 1265–1279. [Google Scholar] [CrossRef]
- US Climate Data. Climate for North Carolina. 2021. Available online: https://www.usclimatedata.com/climate/north-carolina/united-states/3203 (accessed on 6 April 2021).
- Pradhan, S. Predicting Nutrient Loadings and Fate and Transport of Nitrogen Derived from On-Site Systems. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 22 November 2004. [Google Scholar]
- USDA. Pitt County Soil Survey. 1974. Available online: https://www.pittcountync.gov/DocumentCenter/View/6381/Soil-Survey- (accessed on 6 April 2021).
- R Core Team. R: A Language and Environment for Statistical Computing Computer Program; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: http://www.r-project.org (accessed on 6 April 2021).
- RStudio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2019; Available online: http://www.rstudio.com/ (accessed on 6 April 2021).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Wilke, C.O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. 2019. Available online: https://CRAN.R-project.org/package=cowplot (accessed on 6 April 2021).
- Wickham, H.; Bryan, J. readxl: Read Excel Files. 2019. Available online: https://CRAN.R-project.org/package=readxl (accessed on 6 April 2021).
- Wickham, H.; François, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation. 2020. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 6 April 2021).
- Geary, P. Effluent tracing and the transport of contaminants from a domestic septic system. Water Sci. Technol. 2005, 51, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, C.; O’Driscoll, M.; Harris, J. Spatial distribution of fecal indicator bacteria in groundwater beneath two large on-site wastewater treatment systems. Water 2014, 6, 602–619. [Google Scholar] [CrossRef] [Green Version]
- Juan, M.; Chengyao, P.; Li, W.; Shuying, W.; Yang, L.; Ningping, M.; Xia, Y.; Yongzhen, P. Biological nitrogen removal in a step-feed CAST with real-time control treating municipal wastewater. Water Sci. Technol. 2010, 61, 2325–2332. [Google Scholar] [CrossRef]
- Lancellotti, B.; Loomis, G.; Hoyt, K.; Avizinis, E.; Amador, J. Evaluation of nitrogen concentration in final effluent of advanced nitrogen-removal onsite wastewater treatment systems (OWTS). Water Air Soil Pollut. 2017, 228, 1–16. [Google Scholar] [CrossRef]
- Robertson, W.D.; Cherry, J.A. In situ denitrification of septic-system nitrate using reactive porous media barriers: Field trials. Groundwater 1995, 33, 99–111. [Google Scholar] [CrossRef]
- Schipper, L.A.; Vojvodić-Vuković, M. Five years of nitrate removal, denitrification and carbon dynamics in a denitrification wall. Water Res. 2001, 35, 3473–3477. [Google Scholar] [CrossRef]
- Schipper, L.A.; Robertson, W.D.; Gold, A.J.; Jaynes, D.B.; Cameron, S.C. Denitrifying bioreactors—An approach for reducing nitrate loads to receiving waters. Ecol. Eng. 2010, 36, 1532–1543. [Google Scholar] [CrossRef]
- Corbett, D.R.; Dillon, K.; Burnett, W.; Schaefer, G. The spatial variability of nitrogen and phosphorus concentration in a sand aquifer influenced by onsite sewage treatment and disposal systems: A case study on St. George Island, Florida. Environ. Pollut. 2002, 117, 337–345. [Google Scholar] [CrossRef]
- Hill, D.E.; Frink, C.R. Septic system longevity increased by improved design. Water Pollut. Contr. Fed. 1980, 52, 2199–2203. [Google Scholar]
- US EPA. New Homebuyer’s Guide to Septic Systems. 2017. Available online: https://www.epa.gov/sites/production/files/2017-08/documents/170803-homebuyerssepticguide_508c.pdf (accessed on 6 April 2021).
Site | Age at Start of Research (Years) | Drainfield Media | Drainfield Trenches Length (m), Number | Max Design Flow (L·day−1) | Effluent Distribution | Soil Series |
---|---|---|---|---|---|---|
100 | 12 | Polystyrene | 26, 24 | 9500 | Pressure Manifold | Exum |
200 | <1 | Chamber | 30, 20 | 10,880 | Pressure Manifold | Exum |
300 | <1 | Polystyrene | 21, 3 | 1512 | Distribution Box | Wagram |
400 | 12 | Gravel | 24, 5 | 1360 | Distribution Box | Goldsboro |
Site | pH | Temperature (°C) | Specific Conductance (µS·cm−1) | Depth to Water (m) | DO (mg·L−1) |
---|---|---|---|---|---|
100 Tank | 6.6 (1.6) | 14.7 (3.7) | 1400.5 (142.9) | N/A | 1.9 (1.1) |
100 BG | 5.3 (0.9) | 18.6 (5.8) | 108.4 (58.9) | 1.3 (0.6) | 3.8 (2.1) |
101 | 3.9 (0.5) | 18.6 (6.2) | 773.8 (234.9) | 1.8 (0.6) | 3.6 (2.2) |
102 | 5.9 (0.4) | 16.1 (7.8) | 605.7 (225.0) | 1.6 (0.6) | 3.4 (2.8) |
103 | 4.3 (0.8) | 17.2 (5.6) | 309.7 (284.3) | 1.6 (0.6) | 6.4 (3.0) |
104 | 3.9 (0.2) | 18.1 (5.8) | 156.1 (146.3) | 1.6 (0.7) | 3.6 (2.4) |
105 | 3.6 (0.3) | 16.7 (7.6) | 714.7 (342.2) | 1.8 (0.7) | 5.2 (2.4) |
106 | 4.2 (0.4) | 18.6 (6.2) | 408.2 (184.6) | 1.8 (0.6) | 3.7 (2.4) |
100 DG | 4.3 (0.8) | 17.6 (1.0) | 494.7 (242.9) | 1.7 (0.1) | 4.3 (2.5) |
200 Tank | 6.6 (1.1) | 14.7 (3.7) | 1400.5 (142.9) | N/A | 1.9 (1.1) |
200 BG | 5.3 (0.9) | 18.6 (5.8) | 108.4 (58.9) | 1.3 (0.6) | 3.8 (2.1) |
201 | 4.7 (1.0) | 18.6 (5.2) | 285.1 (197.5) | 1.8 (0.6) | 4.5 (2.4) |
202 | 5.1 (0.5) | 18.9 (6.8) | 191.6 (124.8) | 1.7 (0.6) | 4.2 (2.1) |
203 | 4.8 (0.9) | 18 (5.6) | 92.7 (58.0) | 1.8 (0.6) | 4.3 (2.8) |
204 | 4.5 0.2) | 18.4 (5.5) | 257.0 (41.2) | 1.9 (0.6) | 3.9 (1.3) |
205 | 5 (0.6) | 18.3 (5.0) | 291.0 (129.8) | 1.8 (0.6) | 3.0 (1.8) |
206 | 5.2 (0.5) | 18.3 (5.5) | 389.6 (244.9) | 1.8 (0.6) | 3.8 (3.0) |
207 | 4.9 (0.8) | 18.3 (5.4) | 141.7 (82.4) | 1.9 (0.6) | 5.0 (1.8) |
208 | 5.0 (0.6) | 18.3 (5.9) | 111.5 (41.7) | 2.0 (0.6) | 4.4 (2.5) |
200 DG | 4.9 (0.2) | 18.4 (0.3) | 222.0 (103.0) | 1.8 (0.1) | 4.1 (2.2) |
300 Tank | 7.1 (2.2) | 18.0 (8.2) | 1115.4 (196.0) | N/A | 1.9 (0.2) |
300 BG | 5.6 (0.4) | 18.0 (0.2) | 140.9 (48.2) | 2.6 (0.3) | 2.6 (0.3) |
301 | 5.9 (0.6) | 17.8 (62.6) | 175.0 (62.6) | 2.4 (0.2) | 3.5 (2.2) |
302 | 5.3 (0.5) | 18.1 (3.9) | 106.8 (51.2) | 2.8 (0.2) | 5.7 (1.9) |
303 | 5.1 (0.4) | 18.0 (3.5) | 109.6 (25.2) | 3.1 (0.3) | 5.4 (1.7) |
304 | 5.7 (0.5) | 18.4 (4.0) | 175.2 (66.9) | 3.1 (0.3) | 5.3 (1.9) |
305 | 5.5 (0.6) | 18.1 (3.5) | 122.6 (19.1) | 3.4 (0.3) | 5.1 (2.9) |
306 | 5 (0.4) | 18.1 (3.2) | 138.2 (16.8) | 3.3 (0.2) | 6.2 (1.5) |
300 DG | 5.3 (0.3) | 18.2 (0.2) | 136.4 (28.4) | 3.2 (0.2) | 5.5 (2.0) |
400 Tank | 6.6 (0.4) | 21.1 (6.2) | 792.0 (171.3) | N/A | 0.9 (0.6) |
400 BG | 5.5 (0.1) | 18.4 (0.3) | 203.8 (4.2) | 0.8 (0.1) | 2.9 (0.2) |
401 | 5.5 (2.1) | 18.2 (5.6) | 206.7 (24.4) | 0.9 (0.1) | 3 (1.2) |
402 | 5.4 (1.8) | 18.6 (5.8) | 200.8 (79.9) | 0.7 (0.1) | 2.7 (0.8) |
403 | 5.6 (2.1) | 17.6 (7.3) | 523.4 (122.7) | 0.5 (0.1) | 1.8 (0.7) |
404 | 5.5 (1.8) | 16.8 (4.7) | 248.6 (80.0) | 1.3 (0.1) | 2.4 (1.4) |
405 | 5.8 (0.2) | 17.3 (5.4) | 144.8 (55.8) | 1.1 (0.1) | 1.7 (0.9) |
400 DG | 5.6 (0.2) | 17.2 (0.4) | 305.6 (195.6) | 1.0 (0.4) | 2.0 (1.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Humphrey, C.P., Jr.; O’Driscoll, M.; Iverson, G. Comparison of Nitrogen Treatment by Four Onsite Wastewater Systems in Nutrient-Sensitive Watersheds of the North Carolina Coastal Plain. Nitrogen 2021, 2, 268-286. https://doi.org/10.3390/nitrogen2020018
Humphrey CP Jr., O’Driscoll M, Iverson G. Comparison of Nitrogen Treatment by Four Onsite Wastewater Systems in Nutrient-Sensitive Watersheds of the North Carolina Coastal Plain. Nitrogen. 2021; 2(2):268-286. https://doi.org/10.3390/nitrogen2020018
Chicago/Turabian StyleHumphrey, Charles P., Jr., Michael O’Driscoll, and Guy Iverson. 2021. "Comparison of Nitrogen Treatment by Four Onsite Wastewater Systems in Nutrient-Sensitive Watersheds of the North Carolina Coastal Plain" Nitrogen 2, no. 2: 268-286. https://doi.org/10.3390/nitrogen2020018
APA StyleHumphrey, C. P., Jr., O’Driscoll, M., & Iverson, G. (2021). Comparison of Nitrogen Treatment by Four Onsite Wastewater Systems in Nutrient-Sensitive Watersheds of the North Carolina Coastal Plain. Nitrogen, 2(2), 268-286. https://doi.org/10.3390/nitrogen2020018