Comparative Effectiveness of Four Nitrification Inhibitors for Mitigating Carbon Dioxide and Nitrous Oxide Emissions from Three Different Textured Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection, Preparation and Characterization of Soil
2.2. Incubation Experiment
2.3. Collection and Measurement of Emitted CO2 and N2O
2.4. Analysis of NH4+ and NO3− in Soil
2.5. Statistical Analysis
3. Results
3.1. Fluxes of CO2-C and N2O-N
3.2. Total Emissions of CO2-C and N2O-N
3.3. Soil NH4+-N and NO3−-N Concentrations
4. Discussion
4.1. Effect of Soil Type
4.2. Effect of NIs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilsanz, C.; Báez, D.; Misselbrook, T.H.; Dhanoa, M.S.; Cárdenas, L.M. Development of emission factors and efficiency of two nitrification inhibitors, DCD and DMPP. Agric. Ecosyst. Environ. 2016, 216, 1–8. [Google Scholar] [CrossRef]
- Chen, D.; Suter, H.; Islam, A.; Edis, R.; Freney, J.R.; Walker, C.N. Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: A review of enhanced efficiency fertilisers. Soil Res. 2008, 46, 289–301. [Google Scholar] [CrossRef]
- Van Grinsven, H.J.M.; Spiertz, J.H.J.; Westhoek, H.J.; Bouwman, A.F.; Erisman, J.W. Nitrogen use and food production in European regions from a global perspective. J. Agric. Sci. 2014, 152, 9–19. [Google Scholar] [CrossRef][Green Version]
- Sutton, M.A.; Howard, C.M.; Erisman, J.W.; Billen, G.; Bleeker, A.; Grennfelt, P.; van Grinsven, H.; Grizetti, B. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives; Cambridge University Press: Cambridge, NY, USA, 2011. [Google Scholar]
- Liu, R.; Hayden, H.L.; Hu, H.; He, J.; Suter, H.; Chen, D. Effects of the nitrification inhibitor acetylene on nitrous oxide emissions and ammonia-oxidizing microorganisms of different agricultural soils under laboratory incubation conditions. Appl. Soil Ecol. 2017, 119, 80–90. [Google Scholar] [CrossRef]
- Harrison, R.; Webb, J. A review of the effect of N fertilizer type on gaseous emissions. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier Academic Press Inc.: San Diego, CA, USA, 2001; Volume 73, pp. 65–108. [Google Scholar]
- McGeough, K.; Watson, C.; Müller, C.; Laughlin, R.; Chadwick, D. Evidence that the efficacy of the nitrification inhibitor dicyandiamide (DCD) is affected by soil properties in UK soils. Soil Biol. Biochem. 2016, 94, 222–232. [Google Scholar] [CrossRef]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef][Green Version]
- IPCC. Climate change 2007: The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Hénault, C.; Grossel, A.; Mary, B.; Roussel, M.; Léonard, J. Nitrous oxide emission by agricultural soils: A review of spatial andtemporal variability for mitigation. Pedosphere 2021, 22, 426–433. [Google Scholar] [CrossRef]
- Hu, H.-W.; Chen, D.; He, J.-Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 2015, 39, 729–749. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Müller, C.; Cai, Z. Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils. Soil Biol. Biochem. 2015, 84, 199–209. [Google Scholar] [CrossRef]
- Khalil, M.I.; Buegger, F.; Schraml, M.; Gutser, R.; Richards, K.G.; Schmidhalter, U. Gaseous Nitrogen Losses from a Cambisol Cropped to Spring Wheat with Urea Sizes and Placement Depths. Soil Sci. Soc. Am. J. 2009, 73, 1335–1344. [Google Scholar] [CrossRef]
- Volpi, I.; Laville, P.; Bonari, E.; o di Nasso, N.N.; Bosco, S. Improving the management of mineral fertilizers for nitrous oxide mitigation: The effect of nitrogen fertilizer type, urease and nitrification inhibitors in two different textured soils. Geoderma 2017, 307, 181–188. [Google Scholar] [CrossRef]
- Boeckx, P.; Xu, X.; Van Cleemput, O. Mitigation of N2O and CH4 Emission from Rice and Wheat Cropping Systems Using Dicyandiamide and Hydroquinone. Nutr. Cycl. Agroecosyst. 2005, 72, 41–49. [Google Scholar] [CrossRef]
- Zhang, L.-M.; Hu, H.-W.; Shen, J.-P.; He, J.-Z. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J. 2011, 6, 1032–1045. [Google Scholar] [CrossRef][Green Version]
- Barth, G.; Von Tucher, S.; Schmidhalter, U.; Otto, R.; Motavalli, P.; Ferraz-Almeida, R.; Sattolo, T.M.S.; Cantarella, H.; Vitti, G.C. Performance of nitrification inhibitors with different nitrogen fertilizers and soil textures. J. Plant Nutr. Soil Sci. 2019, 182, 694–700. [Google Scholar] [CrossRef]
- Horn, R.; Mordhorst, A.; Fleige, H.; Zimmermann, I.; Burbaum, B.; Filipinski, M.; Cordsen, E. Soil type and land use effects on tensorial properties of saturated hydraulic conductivity in northern Germany. Eur. J. Soil Sci. 2020, 71, 179–189. [Google Scholar] [CrossRef]
- Venterea, R.T.; Petersen, S.O.; De Klein, C.A.; Pedersen, A.R.; Noble, A.D.L.; Rees, R.M.; Gamble, J.D.; Parkin, T.B. Global Research Alliance N2O chamber methodology guidelines: Flux calculations. J. Environ. Qual. 2020, 49, 1141–1155. [Google Scholar] [CrossRef]
- Lou, Y.; Zhou, L. Soil Respiration and the Environment; Academic Press: New York, NY, USA, 2006; p. 33. [Google Scholar]
- Thomsen, I.K.; Schjønning, P.; Olesen, J.E.; Christensen, B.T. C and N turnover in structurally intact soils of different texture. Soil Biol. Biochem. 2003, 35, 765–774. [Google Scholar] [CrossRef]
- Parfitt, R.L.; Salt, G.J.; Saggar, S. Effect of leaching and clay content on carbon and nitrogen mineralisation in maize and pasture soils. Soil Res. 2001, 39, 535. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef]
- Schaufler, G.; Kitzler, B.; Schindlbacher, A.; Skiba, U.; Sutton, M.A.; Zechmeister-Boltenstern, S. Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. Eur. J. Soil Sci. 2010, 61, 683–696. [Google Scholar] [CrossRef]
- Stehfest, E.; Bouwman, L. N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutr. Cycl. Agroecosyst. 2006, 74, 207–228. [Google Scholar] [CrossRef]
- Hart, S.C.; Nason, G.E.; Myrold, D.D.; Perry, D.A. Dynamics of Gross Nitrogen Transformations in an Old-Growth Forest: The Carbon Connection. Ecology 1994, 75, 880–891. [Google Scholar] [CrossRef]
- Liu, R.; Suter, H.; Hayden, H.; He, J.; Chen, D. Nitrate production is mainly heterotrophic in an acid dairy soil with high organic content in Australia. Biol. Fertil. Soils 2015, 51, 891–896. [Google Scholar] [CrossRef]
- Li, C.; Frolking, S.; Butterbach-Bahl, K. Carbon Sequestration in Arable Soils is Likely to Increase Nitrous Oxide Emissions, Offsetting Reductions in Climate Radiative Forcing. Clim. Chang. 2005, 72, 321–338. [Google Scholar] [CrossRef]
- Wan, Y.; Ju, X.; Ingwersen, J.; Schwarz, U.; Stange, C.F.; Zhang, F.; Streck, T. Gross Nitrogen Transformations and Related Nitrous Oxide Emissions in an Intensively Used Calcareous Soil. Soil Sci. Soc. Am. J. 2009, 73, 102–112. [Google Scholar] [CrossRef]
- Abbasi, M.K.; Hina, M.; Tahir, M.M. Effect of Azadirachta indica (neem), sodium thiosulphate and calcium chloride on changes in nitrogen transformations and inhibition of nitrification in soil incubated under laboratory conditions. Chemosphere 2011, 82, 1629–1635. [Google Scholar] [CrossRef]
- Cébron, A.; Berthe, T.; Garnier, J. Nitrification and Nitrifying Bacteria in the Lower Seine River and Estuary (France). Appl. Environ. Microbiol. 2003, 69, 7091–7100. [Google Scholar] [CrossRef][Green Version]
- Fan, C.; Li, B.; Xiong, Z. Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China. Sci. Total Environ. 2018, 612, 480–489. [Google Scholar] [CrossRef]
- Köster, J.R.; Well, R.; Dittert, K.; Giesemann, A.; Lewicka-Szczebak, D.; Mühling, K.H.; Herrmann, A.; Lammel, J.; Senbayram, M. Soil denitrification potential and its influence on N2O reduction and N2O isotopomer ratios. Rapid Commun. Mass Spectrom. 2013, 27, 2363–2373. [Google Scholar] [CrossRef]
- Akiyama, H.; Yan, X.; Yagi, K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: Meta-analysis. Glob. Chang. Biol. 2009, 16, 1837–1846. [Google Scholar] [CrossRef]
- Fisk, L.; Maccarone, L.; Barton, L.; Murphy, D. Nitrapyrin decreased nitrification of nitrogen released from soil organic matter but not amoA gene abundance at high soil temperature. Soil Biol. Biochem. 2015, 88, 214–223. [Google Scholar] [CrossRef][Green Version]
- Marsden, K.A.; Marín-Martínez, A.J.; Vallejo, A.; Hill, P.W.; Jones, D.L.; Chadwick, D.R. The mobility of nitrification inhibitors under simulated ruminant urine deposition and rainfall: A comparison between DCD and DMPP. Biol. Fertil. Soils 2016, 52, 491–503. [Google Scholar] [CrossRef][Green Version]
- Ernfors, M.; Brennan, F.P.; Richards, K.G.; McGeough, K.L.; Griffiths, B.S.; Laughlin, R.J.; Watson, C.J.; Philippot, L.; Grant, J.; Minet, E.P.; et al. The nitrification inhibitor dicyandiamide increases mineralization–immobilization turnover in slurry-amended grassland soil. J. Agric. Sci. 2014, 152, 137–149. [Google Scholar] [CrossRef]
- Wakelin, S.; Williams, E.; O’Sullivan, C.A.; Cameron, K.C.; Di, H.J.; Cave, V.; O’Callaghan, M. Predicting the efficacy of the nitrification inhibitor dicyandiamide in pastoral soils. Plant Soil 2014, 381, 35–43. [Google Scholar] [CrossRef]
- Dittert, K.; Bol, R.; King, R.; Chadwick, D.; Hatch, D. Use of a novel nitrification inhibitor to reduce nitrous oxide emission from15N-labelled dairy slurry injected into soil. Rapid Commun. Mass Spectrom. 2001, 15, 1291–1296. [Google Scholar] [CrossRef]
- Barth, G.; Von Tucher, S.; Schmidhalter, U. Influence of soil parameters on the effect of 3,4-dimethylpyrazole-phosphate as a nitrification inhibitor. Biol. Fertil. Soils 2001, 34, 98–102. [Google Scholar] [CrossRef]
- Barth, G.; Von Tucher, S.; Schmidhalter, U. Effectiveness of 3,4-Dimethylpyrazole Phosphate as Nitriflcation Inhibitor in Soil as Influenced by Inhibitor Concentration, Application Form, and Soil Matric Potential. Pedosphere 2008, 18, 378–385. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C.; Shen, J.-P.; Winefield, C.S.; O’Callaghan, M.; Bowatte, S.; He, J.-Z. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol. Ecol. 2010, 72, 386–394. [Google Scholar] [CrossRef][Green Version]
- Di, H.J.; Cameron, K.C.; Sherlock, R.R. Comparison of the effectiveness of a nitrification inhibitor, dicyandiamide, in reducing nitrous oxide emissions in four different soils under different climatic and management conditions. Soil Use Manag. 2007, 23, 1–9. [Google Scholar] [CrossRef]
- Weiske, A.; Benckiser, G.; Herbert, T.; Ottow, J. Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biol. Fertil. Soils 2001, 34, 109–117. [Google Scholar] [CrossRef]
- Irigoyen, I.; Muro, J.; Azpilikueta, M.; Aparicio-Tejo, P.; Lamsfus, A.C. Ammonium oxidation kinetics in the presence of nitrification inhibitors DCD and DMPP at various temperatures. Soil Res. 2003, 41, 1177–1183. [Google Scholar] [CrossRef]
- Oades, J.M. The retention of organic matter in soils. Biogeochemistry 1988, 5, 35–70. [Google Scholar] [CrossRef]
Characteristic | Marsch | Östliches Hügelland | Geest |
---|---|---|---|
Silt (%) | 10.6 ± 3.9 | 22.3 ± 9.1 | 19.2 ± 7.8 |
Sand (%) | 44.3 ± 5.4 | 62.3 ± 8.7 | 75.0 ± 6.6 |
Clay (%) | 45.1 ± 3.8 | 15.4 ± 4.6 | 5.8 ± 2.3 |
Texture | clayey | loamy | sandy |
Total C (g kg−1) | 20.8 ± 0.34 | 12.0 ± 0.50 | 13.2 ± 0.19 |
Total N (g kg−1) | 1.37 ± 0.01 | 1.13 ± 0.05 | 1.11 ± 0.02 |
NH4+-N (mg kg−1) | 0.86 ± 0.02 | 1.39 ± 0.06 | 3.56 ± 0.06 |
NO3−-N | 10.9 ± 0.32 | 13.47 ± 0.59 | 0.08 ± 0.02 |
pH | 6.00 ± 1.72 | 7.40 ± 2.45 | 5.50 ± 2.03 |
Soil Type | Treatment | CO2-C Flux | N2O-N Flux | NH4+-N | NO3−-N |
---|---|---|---|---|---|
Marsch | Control | 0.001 | 0.016 | 0.000 | 0.000 |
DCD | 0.003 | 0.014 | 0.000 | 0.000 | |
DMPP | 0.045 | 0.021 | 0.093 | 0.089 | |
ENTEC | 0.015 | 0.040 | 0.000 | 0.000 | |
PIADIN | 0.006 | 0.032 | 0.000 | 0.000 | |
Östliches Hügelland | Control | 0.013 | 0.140 | 0.000 | 0.000 |
DCD | 0.085 | 0.017 | 0.008 | 0.007 | |
DMPP | 0.124 | 0.003 | 0.000 | 0.000 | |
ENTEC | 0.004 | 0.001 | 0.000 | 0.000 | |
PIADIN | 0.045 | 0.017 | 0.062 | 0.000 | |
Geest | Control | 0.000 | 0.004 | 0.001 | 0.000 |
DCD | 0.000 | 0.004 | 0.000 | 0.000 | |
DMPP | 0.001 | 0.011 | 0.000 | 0.000 | |
ENTEC | 0.000 | 0.000 | 0.000 | 0.000 | |
PIADIN | 0.001 | 0.034 | 0.000 | 0.002 |
NI | Marsch | Östliches Hügelland | Geest | |||
---|---|---|---|---|---|---|
Emission (mg kg−1) | Decrease (%) | Emission (mg kg−1) | Decrease (%) | Emission (mg kg−1) | Decrease (%) | |
Control | 274 ± 1.3a | - | 54.6 ± 2.3e | - | 60.3 ± 0.4e | - |
DCD | 261 ± 11.5a | 5 | 14.8 ± 1.7g | 73 | 64.4 ± 1.2e | −6.8 |
DMPP | 136 ± 3.8d | 50 | 19.8 ± 0.3g | 64 | 59.6 ± 4.4e | 1.2 |
ENTEC | 231 ± 11.3b | 16 | 35.1 ± 0.5f | 36 | 65.8 ± 1.4e | −9.1 |
PIADIN | 187 ± 8.4c | 32 | 14.5 ± 1.0g | 74 | 65.0 ± 3.3e | −7.8 |
NI | Marsch | Östliches Hügelland | Geest | |||
---|---|---|---|---|---|---|
Emission (mg kg−1) | Decrease (%) | Emission (mg kg−1) | Decrease (%) | Emission (mg kg−1) | Decrease (%) | |
Control | 8051 ± 279b | - | 3516 ± 24d | 1313 ± 19i | - | |
DCD | 1157 ± 222i | 86 | 1861 ± 102g | 47 | 879 ± 34j | 33 |
DMPP | 3533 ± 81d | 56 | 2467 ± 74f | 30 | 157 ± 23k | 88 |
ENTEC | 9849 ± 280a | −22 | 4169 ± 42c | −18 | 1569 ± 17h | −19 |
PIADIN | 3708 ± 408dc | 54 | 2960 ± 105e | 16 | 387 ± 83k | 70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Naeem, A.; Mühling, K.H. Comparative Effectiveness of Four Nitrification Inhibitors for Mitigating Carbon Dioxide and Nitrous Oxide Emissions from Three Different Textured Soils. Nitrogen 2021, 2, 155-166. https://doi.org/10.3390/nitrogen2020011
Guo Y, Naeem A, Mühling KH. Comparative Effectiveness of Four Nitrification Inhibitors for Mitigating Carbon Dioxide and Nitrous Oxide Emissions from Three Different Textured Soils. Nitrogen. 2021; 2(2):155-166. https://doi.org/10.3390/nitrogen2020011
Chicago/Turabian StyleGuo, Yafei, Asif Naeem, and Karl H. Mühling. 2021. "Comparative Effectiveness of Four Nitrification Inhibitors for Mitigating Carbon Dioxide and Nitrous Oxide Emissions from Three Different Textured Soils" Nitrogen 2, no. 2: 155-166. https://doi.org/10.3390/nitrogen2020011