Synchronization of Fractional Chaotic Systems with Time-Varying Perturbation
Abstract
1. Introduction
- (1)
- An improved RBF neural network with a wavelet function is proposed.
- (2)
- Based on the Barbalat lemma, an adaptive WRBF neural network controller and adaptive law are designed. The designed controller can obtain the synchronization of fractional systems under the condition of external disturbance.
2. Preliminaries
3. Synchronization Controller Design
3.1. Description of Synchronization Control Problems
3.2. Controller Design with WRBF
4. Simulation
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elwy, O.; Abdelaty, A.M.; Said, L.A.; Radwan, A.G. Fractional calculus definitions, Approximations, and engineering applications. J. Eng. Appl. Sci. 2020, 67, 1–30. [Google Scholar]
- Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Das, S. Application of generalized fractional calculus in other science and engineering fields. In Functional Fractional Calculus; Springer: Berlin/Heidelberg, Germany, 2011; pp. 437–492. [Google Scholar]
- Hernndez-Balaguera, E. Coulostatics in bioelectrochemistry: A physical interpretation of the electrode-tissue processes from the theory of fractional calculus. Chaos Solitons Fractals 2021, 145, 110787. [Google Scholar] [CrossRef]
- Samraiz, M.; Perveen, Z.; Abdeljawad, T.; Iqbal, S.; Naheed, S. On certain fractional calculus operators and applications in mathematical physics. Phys. Scr. 2020, 95, 115210. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Banerjee, S.; Wu, G.-C. Discrete tempered fractional calculus for new chaotic systems with short memory and image encryption. Opt.-Int. J. Light Electron Opt. 2020, 218, 163698. [Google Scholar] [CrossRef]
- Banchuin, R. Comparative analyses of electrical circuits with conventional and revisited definitions of circuit elements: A fractional conformable calculus approach. COMPEL 2022, 41, 258–282. [Google Scholar] [CrossRef]
- Yang, J.; Xiong, J.; Cen, J.; He, W. Finite-time generalized synchronization of non-identical fractional order chaotic systems and its application in speech secure communication. PLoS ONE 2022, 17, e0263007. [Google Scholar] [CrossRef]
- Prommee, P.; Pienpichayapong, P.; Manositthichai, N.; Wongprommoon, N. OTA-based tunable fractional-order devices for biomedical engineering. AEU-Int. J. Electron. Commun. 2021, 128, 153520. [Google Scholar] [CrossRef]
- Yang, X.; Fang, H.; Wu, Y.; Jia, W. RBF neural network fractional-order sliding mode control with an application to direct a three matrix converter under an unbalanced grid. Sustainability 2022, 14, 3193. [Google Scholar] [CrossRef]
- Chang, S.-C. Bifurcation, routes to chaos, and synchronized chaos of electromagnetic valve train in camless engines. Int. J. Nonlinear Sci. Numer. Simul. 2021, 22, 447–460. [Google Scholar] [CrossRef]
- Aliabadi, F.; Majidi, M.-H.; Khorashadizadeh, S. Chaos synchronization using adaptive quantum neural networks and its application in secure communication and cryptography. Neural Comput. Appl. 2022, 34, 6521–6533. [Google Scholar] [CrossRef]
- Zeng, X.; Hui, Q.; Haddad, W.M.; Hayakawa, T.; Bailey, J.M. Synchronization of biological neural network systems with stochastic perturbations and time delays. J. Frankl. Inst. 2014, 351, 1205–1225. [Google Scholar] [CrossRef]
- Leung, E.K.; Lee, C.K.H.; Ouyang, Z. From traditional warehouses to physical internet hubs: A digital twin-based inbound synchronization framework for PI-order management. Int. J. Prod. Econ. 2022, 244, 108353. [Google Scholar] [CrossRef]
- Khan, T.; Chaudhary, H. Combination anti-synchronization for chaos generated by generalized Lotka-Volterra biological systems using parameter identification method. Math. Eng. Sci. Aerosp. 2021, 12, 383–393. [Google Scholar]
- Khan, T.; Chaudhary, H. An investigation on parameter identification method of controlling chaos in generalized Lotka-Volterra systems via hybrid projective difference combination synchronization technique. In Advances in Mechanical Engineering; Springer: Singapore, 2021; pp. 547–558. [Google Scholar]
- Wang, R.; Zhang, Y.; Chen, Y.; Chen, X.; Xi, L. Fuzzy neural network-based chaos synchronization for a class of fractional-order chaotic systems: An adaptive sliding mode control approach. Nonlinear Dyn. 2020, 100, 1275–1287. [Google Scholar]
- Hai, Q. Sampled-data synchronization control for chaotic neural networks with mixed delays: A discontinuous Lyapunov functional approach. IEEE Access 2021, 9, 25383–25393. [Google Scholar] [CrossRef]
- Pan, L.; He, P.; Li, Z.; Mi, H.; Wang, H. Delay-range-dependent H∞ synchronization approaches for time-delay chaotic systems. Int. J. Comput. Math. 2021, 99, 949–965. [Google Scholar] [CrossRef]
- Kumar, S.; Khan, A. Controlling and synchronization of chaotic systems via Takagi-Sugeno fuzzy adaptive feedback control techniques. J. Control Autom. Electr. Syst. 2021, 32, 842–852. [Google Scholar]
- Zhang, F.; Gao, R.; Huang, Z.; Jiang, C.; Chen, Y.; Zhang, H. Complex modified projective difference function synchronization of coupled complex chaotic systems for secure communication in WSNs. Mathematics 2022, 10, 1202. [Google Scholar] [CrossRef]
- Chaudhary, H.; Khan, A.; Nigar, U.; Kaushik, S.; Sajid, M. An effective synchronization approach to stability analysis for chaotic generalized Lotka-Volterra biological models using active and parameter identification methods. Entropy 2022, 24, 529. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Li, T.; Sajid, M.; Ali, S.; Pu, L. Parameter identification and the finite-time combination-combination synchronization of fractional-order chaotic systems with different structures under multiple stochastic disturbances. Mathematics 2022, 10, 712. [Google Scholar] [CrossRef]
- Pan, W.; Li, T.; Wang, Y. The multi-switching sliding mode combination synchronization of fractional order non-identical chaotic system with stochastic disturbances and unknown parameters. Fractal Fract. 2022, 6, 102. [Google Scholar] [CrossRef]
- Anbalagan, P.; Ramachandran, R.; Alzabut, J.; Hincal, E.; Niezabitowski, M. Improved results on finite-time passivity and synchronization problem for fractional-order memristor-based competitive neural networks: Interval matrix approach. Fractal Fract. 2022, 6, 36. [Google Scholar] [CrossRef]
- Xiao, J.; Cheng, J.; Shi, K.; Zhang, R. A general approach to fixed-time synchronization problem for fractional-order multidimension-Valued fuzzy neural networks based on memristor. IEEE Trans. Fuzzy Syst. 2022, 30, 968–977. [Google Scholar] [CrossRef]
- Li, R.; Wu, H.; Cao, J. Impulsive exponential synchronization of fractional-order complex dynamical networks with derivative couplings via feedback control based on discrete time state observations. Acta Math. Sci. 2022, 42, 737–754. [Google Scholar] [CrossRef]
- Nian, F.; Liu, X.; Zhang, Y.; Yu, X. Module-phase synchronization of fractional-order complex chaotic systems based on RBF neural network and sliding mode control. Int. J. Mod. Phys. B 2020, 34, 2050050. [Google Scholar] [CrossRef]
- Fei-Fei, L.; Zhe-Zhao, Z. Synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive neural network control. Acta Phys. Sin. 2017, 66, 090504. [Google Scholar] [CrossRef]
- Luo, G.; Yang, Z.; Peng, K. Synchronizing chaotic systems with uncertain model and unknown interference using sliding mode control and wavelet neural networks. Neural Process. Lett. 2019, 50, 2547–2565. [Google Scholar] [CrossRef]
- Wang, S. The synchronization of fractional chaotic systems with WRBF neural network. Eur. Phys. J. Plus 2022, 137, 945. [Google Scholar] [CrossRef]
- Wang, S. A 3D autonomous chaotic system: Dynamics and synchronization. Indian J. Phys. 2024, 98, 4525–4533. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S. Synchronization of Fractional Chaotic Systems with Time-Varying Perturbation. Fractal Fract. 2025, 9, 618. https://doi.org/10.3390/fractalfract9090618
Wang S. Synchronization of Fractional Chaotic Systems with Time-Varying Perturbation. Fractal and Fractional. 2025; 9(9):618. https://doi.org/10.3390/fractalfract9090618
Chicago/Turabian StyleWang, Shaofu. 2025. "Synchronization of Fractional Chaotic Systems with Time-Varying Perturbation" Fractal and Fractional 9, no. 9: 618. https://doi.org/10.3390/fractalfract9090618
APA StyleWang, S. (2025). Synchronization of Fractional Chaotic Systems with Time-Varying Perturbation. Fractal and Fractional, 9(9), 618. https://doi.org/10.3390/fractalfract9090618