Analysis of Fast Convergent Iterative Scheme with Fractal Generation
Abstract
1. Introduction
2. Motivation and Research Gap
- Picard–Mann iteration is already a tradeoff between stability (slower convergence) and convergence speed.
- s-convexity adds a parameter of tuning, which improves iteration, navigating the control of steps, which enhances convergence and fractal variability.
- A novel iterative approach is provided, combining Picard–Mann iteration with s-convexity and a rigorously determined escape condition for functions.
- Convergence analysis is performed in both the complex plane and Banach spaces, demonstrating that the suggested method provides faster convergence than Mann and Picard–Mann schemes.
- Extensive numerical experiments are carried out to demonstrate fractal formation with varying parameter values, highlighting increases in visual richness and computing efficiency.
3. Preliminaries
4. Main Results
5. Convergence in an Arbitrary Banach Space
6. Generation of Fractals
Algorithm 1: Creating Julia set |
Input: for all , where , ,
such that and —the function; —the area; K—the maximum number of iterations; —the New iteration with s-convexity; parameters; colormap —color map with colors. Output: Julia set for area G
|
Algorithm 2: Creating Mandelbrot Set |
Input: for all , where , ,
, such that ; —the complex grid of interest; K—maximum number of iterations; —new iteration operator with s-convexity; —control parameters; Colormap with colors. Output: Mandelbrot set for the region G
|
6.1. Julia Set
6.1.1. Julia Set of Varying Parameter
6.1.2. Julia Set of Varying Parameter
6.1.3. Julia Set of Varying Parameter
6.1.4. Effects of Changing Parameter r to Produce Julia Sets
6.1.5. Effects of Changing Parameter to Produce Julia Sets
6.1.6. Julia Set of Varying Parameter s
6.2. Mandelbrot Sets
6.2.1. Mandelbrot Set of Varying Parameter
6.2.2. Mandelbrot Set of Varying Parameter s
6.2.3. Mandelbrot Set of Varying Parameter
6.2.4. Mandelbrot Set of Varying Parameter
6.2.5. Mandelbrot set of varying parameter r
7. Limitations
- The technique is designed only for a certain class of complex functions under s-convexity conditions.
- The experiments were limited to a maximum of 50 iterations.
- The approach is only compared with the Mann and Picard–Mann iterations.
- The scheme is extremely dependent on the parameters.
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Julia, G. Mémoire sur l’itération des fonctions rationnelles. J. Math. Pures Appl. 1918, 1, 47–245. [Google Scholar]
- Mandelbort, B.B. The Fractal Geometry of Nature; Freeman: San Francisco, CA, USA, 1982. [Google Scholar]
- Rani, M.; Kumar, V. Superior julia set. Res. Math. Educ. 2004, 8, 261–277. [Google Scholar]
- Sadek, L.; Bataineh, A.S.; Sadek, E.M.; Hashim, I. A general definition of the fractal derivative: Theory and applications. AIMS Math. 2025, 10, 15390–15409. [Google Scholar] [CrossRef]
- Rana, R.; Chauhan, Y.S.; Negi, A. Non linear dynamics of Ishikawa iteration. Int. J. Comput. Appl. 2010, 7, 43–49. [Google Scholar] [CrossRef]
- Chauhan, Y.S.; Rana, R.; Negi, A. New tricorn and multicorns of Ishikawa iterates. Int. J. Comput. Appl. 2010, 7, 25–33. [Google Scholar] [CrossRef]
- Rani, M.; Chugh, R. Julia sets and Mandelbrot sets in Noor orbit. Appl. Math. Comput. 2014, 228, 615–631. [Google Scholar] [CrossRef]
- Abbas, M.; Iqbal, H.; De la Sen, M. Generation of Julia and Mandelbrot sets via fixed points. Symmetry 2020, 12, 86. [Google Scholar] [CrossRef]
- Kang, S.M.; Rafiq, A.; Latif, A.; Shahid, A.A.; Ali, F. Fractals through modified iteration scheme. Filomat 2016, 30, 3033–3046. [Google Scholar] [CrossRef][Green Version]
- Zou, C.; Shahid, A.A.; Tassaddiq, A.; Khan, A.; Ahmad, M. Mandelbrot sets and Julia sets in Picard-Mann orbit. IEEE Access 2020, 8, 64411–64421. [Google Scholar] [CrossRef]
- Kumari, S.; Gdawiec, K.; Nandal, A.; Postolache, M.; Chugh, R. A novel approach to generate Mandelbrot sets, Julia sets and biomorphs via viscosity approximation method. Chaos Solitons Fractals 2022, 163, 112540. [Google Scholar] [CrossRef]
- Phuengrattana, W.; Suantai, S. On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval. J. Comput. Appl. Math. 2011, 235, 3006–3014. [Google Scholar] [CrossRef]
- Joshi, S.; Chauhan, D.Y.S.; Negi, D.A. New Julia and Mandelbrot Sets for Jungck Ishikawa Iterates. arXiv 2014, arXiv:1404.0981. [Google Scholar] [CrossRef]
- Li, X.; Tanveer, M.; Abbas, M.; Ahmad, M.; Kwun, Y.C.; Liu, J. Fixed point results for fractal generation in extended Jungck–SP orbit. IEEE Access 2019, 7, 160472–160481. [Google Scholar] [CrossRef]
- Tanveer, M.; Nazeer, W.; Gdawiec, K. New escape criteria for complex fractals generation in Jungck-CR orbit. Indian J. Pure Appl. Math. 2020, 51, 1285–1303. [Google Scholar] [CrossRef]
- Pinheiro, M.R. S-convexity-foundations for Analysis. In Differential Geometry-Dynamical Systems; Balkan Society of Geometers, Geometry Balkan Press: Bucharest, Romania, 2008. [Google Scholar]
- Shahid, A.A.; Nazeer, W.; Gdawiec, K. The Picard–Mann iteration with s-convexity in the generation of Mandelbrot and Julia sets. Monatshefte Für Math. 2021, 195, 565–584. [Google Scholar] [CrossRef]
- Cho, S.Y.; Shahid, A.A.; Nazeer, W.; Kang, S.M. Fixed point results for fractal generation in Noor orbit and s-convexity. SpringerPlus 2016, 5, 1843. [Google Scholar] [CrossRef]
- Kumari, S.; Kumari, M.; Chugh, R. Generation of new fractals via SP orbit with s-convexity. Int. J. Eng. Technol. 2017, 9, 2491–2504. [Google Scholar] [CrossRef]
- Gdawiec, K.; Shahid, A.A. Fixed point results for the complex fractal generation in the S-iteration orbit with s-convexity. Open J. Math. Sci. (OMS) 2018, 2, 56–72. [Google Scholar] [CrossRef]
- Kang, S.M.; Nazeer, W.; Tanveer, M.; Shahid, A.A. New Fixed Point Results for Fractal Generation in Jungck Noor Orbit with s-Convexity. J. Funct. Spaces 2015, 2015, 963016. [Google Scholar] [CrossRef]
- Adhikari, N.; Sintunavarat, W. The Julia and Mandelbrot sets for the function zp-qz2+rz+sincw exhibit Mann and Picard–Mann orbits along with s-convexity. Chaos Solitons Fractals 2024, 181, 114600. [Google Scholar] [CrossRef]
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Khan, S.H. A Picard-Mann hybrid iterative process. Fixed Point Theory Appl. 2013, 2013, 69. [Google Scholar] [CrossRef]
- Tian, G.; Yuan, Q.; Hu, T.; Shi, Y. Auto-generation system based on fractal geometry for batik pattern design. Appl. Sci. 2019, 9, 2383. [Google Scholar] [CrossRef]
- Isnanto, R.R.; Hidayatno, A.; Zahra, A.A. Fractal batik motifs generation using variations of parameters in julia set function. In Proceedings of the 2020 8th International Conference on Information and Communication Technology (ICoICT), Yogyakarta, Indonesia, 24–26 June 2020; pp. 1–6. [Google Scholar]
Iteration_g | Mann | Picard_Mann | New_Iteration |
---|---|---|---|
0 | 1 | 1 | 1 |
1 | 1.3333 | 1.3333 | 1.4938 |
2 | 1.4444 | 1.4444 | 1.4999 |
3 | 1.4815 | 1.4815 | 1.5 |
4 | 1.4938 | 1.4938 | 1.5 |
5 | 1.4979 | 1.4979 | 1.5 |
6 | 1.4993 | 1.4993 | 1.5 |
7 | 1.4998 | 1.4998 | 1.5 |
8 | 1.4999 | 1.4999 | 1.5 |
9 | 1.5 | 1.5 | 1.5 |
10 | 1.5 | 1.5 | 1.5 |
S.N. | s | p | r | Execution Time (s) | ||||
---|---|---|---|---|---|---|---|---|
1 | 0.79 | 0.68 | 0.0001 | 1 | 2 | 0.29 | 0.21 | 0.50441 |
2 | 0.79 | 0.68 | 0.0001 | 2 | 2 | 0.29 | 0.21 | 0.43948 |
3 | 0.79 | 0.68 | 0.0001 | 3 | 2 | 0.29 | 0.21 | 0.72635 |
4 | 0.79 | 0.68 | 0.0001 | 4 | 2 | 0.29 | 0.21 | 0.76278 |
5 | 0.79 | 0.68 | 0.0001 | 5 | 2 | 0.29 | 0.21 | 0.82901 |
6 | 0.79 | 0.68 | 0.0001 | 6 | 2 | 0.29 | 0.21 | 1.0348 |
S.N. | s | p | r | Execution Time (s) | ||||
---|---|---|---|---|---|---|---|---|
1 | 0.68 | 0.0001 | 6 | 2 | 0.29 | 0.21 | 0.82658 | |
2 | 0.68 | 0.0001 | 6 | 2 | 0.29 | 0.21 | 0.91734 | |
3 | 0.68 | 0.0001 | 6 | 2 | 0.29 | 0.21 | 0.71231 | |
4 | 0.68 | 0.0001 | 6 | 2 | 0.29 | 0.21 | 2.3541 | |
5 | 0.68 | 0.0001 | 6 | 2 | 0.29 | 0.21 | 0.59219 | |
6 | 0.68 | 0.0001 | 6 | 2 | 0.29 | 0.21 | 2.722 |
S.N. | s | p | r | Execution Time (s) | ||||
---|---|---|---|---|---|---|---|---|
1 | 0.79 | 0.68 | 0.0001 | 6 | 2 | 0.29 | 0.21 | 4.2127 |
2 | 0.79 | 0.68 | 0.01 | 6 | 2 | 0.29 | 0.21 | 3.4897 |
3 | 0.79 | 0.68 | 0.1 | 6 | 2 | 0.29 | 0.21 | 3.3811 |
4 | 0.79 | 0.68 | 0.2 | 6 | 2 | 0.29 | 0.21 | 4.1686 |
5 | 0.79 | 0.68 | 0.3 | 6 | 2 | 0.29 | 0.21 | 3.7768 |
6 | 0.79 | 0.68 | 0.5 | 6 | 2 | 0.29 | 0.21 | 3.2607 |
S.N. | s | p | r | Execution Time (s) | ||||
---|---|---|---|---|---|---|---|---|
1 | 0.79 | 0.68 | 0.0001 | 6 | 2 | 0.29 | 78.826 | |
2 | 0.79 | 0.68 | 0.0001 | 6 | 2 | 0.29 | 9.0484 | |
3 | 0.79 | 0.68 | 0.0001 | 6 | 2 | 0.29 | 5.7743 | |
4 | 0.79 | 0.68 | 0.0001 | 6 | 2 | 0.29 | 5.7464 | |
5 | 0.79 | 0.68 | 0.0001 | 6 | 2 | 0.29 | 6.3488 | |
6 | 0.79 | 0.68 | 0.0001 | 6 | 2 | 0.29 | 6.7224 |
S.N. | s | a | r | Execution Time (s) | ||||
---|---|---|---|---|---|---|---|---|
1 | 0.79 | 0.68 | 0.0001 | 6 | 2 | 0.21 | 0.81937 | |
2 | 0.79 | 0.68 | 0.0001 | 6 | 2 | 0.21 | 0.52985 | |
3 | 0.79 | 0.68 | 0.0001 | 6 | 2 | 0.21 | 0.87624 | |
4 | 0.79 | 0.68 | 0.0001 | 6 | 2 | 0.21 | 0.59344 | |
5 | 0.79 | 0.68 | 0.0001 | 6 | 2 | 0.21 | 1.2285 | |
6 | 0.79 | 0.68 | 0.0001 | 6 | 2 | 0.21 | 4.2052 |
S.N. | s | p | r | Execution Time (s) | ||||
---|---|---|---|---|---|---|---|---|
1 | 0.79 | 0.01 | 0.0001 | 6 | 2 | 0.29 | 0.21 | 0.89842 |
2 | 0.79 | 0.04 | 0.0001 | 6 | 2 | 0.29 | 0.21 | 0.80768 |
3 | 0.79 | 0.10 | 0.0001 | 6 | 2 | 0.29 | 0.21 | 0.93959 |
4 | 0.79 | 0.30 | 0.0001 | 6 | 2 | 0.29 | 0.21 | 1.004 |
5 | 0.79 | 0.50 | 0.0001 | 6 | 2 | 0.29 | 0.21 | 0.91221 |
6 | 0.79 | 0.70 | 0.0001 | 6 | 2 | 0.29 | 0.21 | 1.0423 |
S.N. | s | p | r | Execution Time (s) | |||
---|---|---|---|---|---|---|---|
1 | 0.78 | 0.4 | 1 | 2.9 | 2.9 | 1.9 | 4.1524 |
2 | 0.78 | 0.4 | 2 | 2.9 | 2.9 | 1.9 | 3.3197 |
3 | 0.78 | 0.4 | 3 | 2.9 | 2.9 | 1.9 | 15.493 |
4 | 0.78 | 0.4 | 4 | 2.9 | 2.9 | 1.9 | 31.976 |
5 | 0.78 | 0.4 | 5 | 2.9 | 2.9 | 1.9 | 35.692 |
6 | 0.78 | 0.4 | 6 | 2.9 | 2.9 | 1.9 | 39.684 |
S.N. | s | p | r | Execution Time (s) | |||
---|---|---|---|---|---|---|---|
1 | 0.01 | 0.0004 | 6 | 2 | 0.9 | 1.9 | 22.412 |
2 | 0.0002 | 0.0004 | 6 | 2 | 0.9 | 1.9 | 40.368 |
3 | 0.00005 | 0.0004 | 6 | 2 | 0.9 | 1.9 | 27.722 |
4 | 0.000008 | 0.0004 | 6 | 2 | 0.9 | 1.9 | 20.171 |
5 | 0.095 | 0.0004 | 6 | 2 | 0.9 | 1.9 | 34.652 |
6 | 0.99 | 0.0004 | 6 | 2 | 0.9 | 1.9 | 23.996 |
S.N. | s | a | r | Execution Time (s) | |||
---|---|---|---|---|---|---|---|
1 | 0.78 | 0.00001 | 6 | 2 | 0.5 | 1.9 | 33.378 |
2 | 0.78 | 0.01 | 6 | 2 | 0.5 | 1.9 | 41.584 |
3 | 0.78 | 0.1 | 6 | 2 | 0.5 | 1.9 | 40.824 |
4 | 0.78 | 0.3 | 6 | 2 | 0.5 | 1.9 | 41.394 |
5 | 0.78 | 0.6 | 6 | 2 | 0.5 | 1.9 | 42.188 |
6 | 0.78 | 1 | 6 | 2 | 0.5 | 1.9 | 37.559 |
S.N. | s | p | r | Execution Time (s) | |||
---|---|---|---|---|---|---|---|
1 | 0.78 | 0.4 | 6 | 2.9 | 0.1 | 1.9 | 31.745 |
2 | 0.78 | 0.4 | 6 | 2.9 | −0.1 | 1.9 | 40.521 |
3 | 0.78 | 0.4 | 6 | 2.9 | 0.1 | 1.9 | 39.606 |
4 | 0.78 | 0.4 | 6 | 2.9 | 0.4 | 1.9 | 36.408 |
5 | 0.78 | 0.4 | 6 | 2.9 | 0.5 | 1.9 | 30.970 |
6 | 0.78 | 0.4 | 6 | 2.9 | 1.0 | 1.9 | 31.384 |
S.N. | s | a | r | Execution Time (s) | |||
---|---|---|---|---|---|---|---|
1 | 0.78 | 0.4 | 6 | 2.9 | 2.9 | −2 | 19.480 |
2 | 0.78 | 0.4 | 6 | 2.9 | 2.9 | −1 | 22.909 |
3 | 0.78 | 0.4 | 6 | 2.9 | 2.9 | 0 | 39.832 |
4 | 0.78 | 0.4 | 6 | 2.9 | 2.9 | 1 | 40.506 |
5 | 0.78 | 0.4 | 6 | 2.9 | 2.9 | 2 | 34.524 |
6 | 0.78 | 0.4 | 6 | 2.9 | 2.9 | 3 | 37.622 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nisa, Z.U.; Ishtiaq, U.; Kamran, T.; Akram, M.; Popa, I.-L. Analysis of Fast Convergent Iterative Scheme with Fractal Generation. Fractal Fract. 2025, 9, 575. https://doi.org/10.3390/fractalfract9090575
Nisa ZU, Ishtiaq U, Kamran T, Akram M, Popa I-L. Analysis of Fast Convergent Iterative Scheme with Fractal Generation. Fractal and Fractional. 2025; 9(9):575. https://doi.org/10.3390/fractalfract9090575
Chicago/Turabian StyleNisa, Zaib Un, Umar Ishtiaq, Tayyab Kamran, Mohammad Akram, and Ioan-Lucian Popa. 2025. "Analysis of Fast Convergent Iterative Scheme with Fractal Generation" Fractal and Fractional 9, no. 9: 575. https://doi.org/10.3390/fractalfract9090575
APA StyleNisa, Z. U., Ishtiaq, U., Kamran, T., Akram, M., & Popa, I.-L. (2025). Analysis of Fast Convergent Iterative Scheme with Fractal Generation. Fractal and Fractional, 9(9), 575. https://doi.org/10.3390/fractalfract9090575