New Interaction Patterns for the Truncated M-Fractional Kadomtsev–Petviashvili Equation in High-Dimensional Space
Abstract
1. Introduction
2. Methods
2.1. The Consistent Riccati Expansion Method
2.2. The Simple Direct Method
3. Interaction Patterns Among Elliptic Functions and Hyperbolic or Trigonometric Functions
3.1. Soliton Solutions, Hybrid Soliton Solutions, and Trigonometric Function Solutions
- (1)
- When then
- (2)
- When then
- (3)
- When then
- (4)
- When then
- (5)
- When then
- (6)
- When then
- (7)
- When then
- (8)
- When then
- (9)
- When then
- (10)
- When then
- (11)
- When then
- (12)
- When then
- (13)
- When then
- (14)
- When then
3.2. Interaction Solutions Among Cnoidal Waves, Trigonometric Waves, and Soliton Waves
3.2.1.
3.2.2.
4. Finite Symmetry Transformation Group via the Simple Direct Method
4.1. Finite Symmetry Transformation Group
4.2. The Lie Point Symmetry
5. New Interaction Patterns
5.1. New Interaction Patterns Based on the Dark Soliton Solution
5.1.1. Fractional Soliton Solution
5.1.2. Interaction Solution Between the Exponential Function and the Dark Soliton
5.1.3. Interaction Solution Between the Trigonometric Sine Function and the Dark Soliton
5.2. New Interaction Patterns Based on the Lump Solution
5.2.1. Fractional Lump Solution
5.2.2. Interaction Solution Between Trigonometric Sine Function and the Lump Soliton
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandelbrot, B.B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef] [PubMed]
- Oldham, K.B.; Spanier, J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order; Academic Press: New York, NY, USA; London, UK, 1974. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W.H. Freeman: San Francisco, CA, USA, 1982. [Google Scholar]
- Sabatier, J.; Agrawal, O.P.; Machado, J.A.T. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Cattani, C. Fractal and fractional. Fractal Fract. 2017, 1, 1. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, X.N.; Sun, H.G.; Tick, G.R.; Wei, W. Applicability of time fractional derivative models for simulating the dynamics and mitigation scenarios of COVID-19. Chaos Solitons Fractals 2020, 138, 109959. [Google Scholar] [CrossRef]
- Azizi, T. Application of the fractional calculus in pharmacokinetic compartmental modeling. Commun. Biomath. Sci. 2022, 5, 63–77. [Google Scholar] [CrossRef]
- Ma, P.C.; Taghipour, M.; Cattani, C. Option pricing in the illiquid markets under the mixed fractional Brownian motion model. Chaos Solitons Fractals 2024, 182, 114806. [Google Scholar] [CrossRef]
- Chen, Q.L.; Dipesh; Kumar, P.; Baskonus, H.M. Modeling and analysis of demand-supply dynamics with a collectability factor using delay differential equations in economic growth via the Caputo operator. AIMS Math. 2024, 9, 7471–7491. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Yan, L.; Baskonus, H.M.; Cattani, C.; Gao, W. Extraction of the gravitational potential and high-frequency wave perturbation properties of nonlinear (3+1)-dimensional Vakhnenko-Parkes equation via novel approach. Math. Method Appl. Sci. 2024, 47, 3480–3489. [Google Scholar] [CrossRef]
- He, J.H.; Elgazery, N.S.; Elazem, N.Y.A. Magneto-radiative gas near an unsmooth boundary with variable temperature. Int. J. Numer. Methods Heat Fluid Flow 2023, 33, 545–569. [Google Scholar] [CrossRef]
- Baskonus, H.M.; Ruiz, L.M.S.; Ciancio, A. New challenges arising in engineering problems with fractional and integer order-II. Fractal Fract. 2022, 6, 665. [Google Scholar] [CrossRef]
- Miranda-Valdez, I.Y.; Puente-Córdova, J.G.; Rentería-Baltiérrez, F.Y.; Fliri, L.; Hummel, M.; Puisto, A.; Koivisto, J.; Alava, M.J. Viscoelastic phenomena in methylcellulose aqueous systems: Application of fractional calculus. Food Hydrocoll. 2024, 147, 109334. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, W.R.; Zhang, L.; Xu, W.B. Application of fractional calculus in iterative sliding mode synchronization control. Arch. Electr. Eng. 2020, 69, 499–519. [Google Scholar] [CrossRef]
- Elwy, O.; Abdelaty, A.M.; Said, L.A. Fractional calculus definitions, approximations, and engineering applications. J. Eng. Appl. Sci. 2020, 67, 1–30. [Google Scholar]
- Yousefpour, A.; Jahanshahi, H.; Castillo, O. Application of variable-order fractional calculus in neural networks: Where do we stand? Eur. Phys. J.-Spec. Top. 2022, 231, 1753–1756. [Google Scholar] [CrossRef]
- Atman, K.G.; Şirin, H. Nonlocal phenomena in quantum mechanics with fractional calculus. Rep. Math. Phys. 2020, 86, 263–270. [Google Scholar] [CrossRef]
- Atman, K.G.; Şirin, H. Quantization of nonlocal fields via fractional calculus. Phys. Scr. 2022, 97, 065203. [Google Scholar] [CrossRef]
- Kadomtsev, B.B.; Petviashvili, V.I. On the stability of solitary waves in weakly dispersing media. Dokl. Akad. Nauk. 1970, 192, 753–756. [Google Scholar]
- Lou, S.Y.; Lin, J.; Zhang, J.F.; Xu, X.J. Infinitely many symmetries of the bilinear Kadomtsev-Petviashvili equation. Chin. Phys. B 1994, 3, 241–249. [Google Scholar]
- Ma, W.X. Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A 2015, 379, 1975–1978. [Google Scholar] [CrossRef]
- Kumar, S.; Dhiman, S.K.; Baleanu, D.; Osman, M.S.; Wazwaz, A.M. Lie symmetries, closed-form solutions, and various dynamical profiles of solitons for the variable coefficient (2+1)-dimensional KP equations. Symmetry 2022, 14, 597. [Google Scholar] [CrossRef]
- Tian, H.; Niu, Y.; Ghanbari, B.; Zhang, Z.; Cao, Y. Integrability and high-order localized waves of the (4+1) dimensional nonlinear evolution equation. Chaos Solitons Fractals 2022, 162, 112406. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Painlevé integrability and lump solutions for two extended (3+1)-and (2+1)-dimensional Kadomtsev-Petviashviliequations. Nonlinear Dynam. 2023, 111, 3623–3632. [Google Scholar] [CrossRef]
- Liu, M.Y.; Xu, H.; Wang, Z.G.; Chen, G.Y. Exact solutions and bifurcation of a modified generalized multidimensional fractional Kadomtsev-Petviashvili equation. Fractals 2024, 32, 2450046. [Google Scholar] [CrossRef]
- Wang, K.L. Exact travelling wave solution for the local fractional Camassa-Holm-Kadomtsev-Petviashvili equation. Alex. Eng. J. 2023, 63, 371–376. [Google Scholar] [CrossRef]
- Muhammad, J.; Younas, U.; Hussain, E.; Ali, Q.; Sediqmal, M.; Kedzia, K.; Jan, A.Z. Analysis of fractional solitary wave propagation with parametric effects and qualitative analysis of the modified Korteweg-de Vries Kadomtsev-Petviashvili equation. Sci. Rep. 2024, 14, 19736. [Google Scholar] [CrossRef]
- Sousa, J.V.D.C.; de Oliveira, E.C. A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl. 2018, 16, 83–96. [Google Scholar] [CrossRef]
- Maasoomah, S.; Ghazala, A.; Saima, A.; Kainat, F. A study of fractional complex Ginzburg–Landau model with three kinds of fractional operators. Chaos Solitons Fractals 2023, 166, 112976. [Google Scholar]
- Sales Teodoro, G.; Tenreiro Machado, J.A.; Capelas de Oliveira, E. A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 2019, 388, 195–208. [Google Scholar] [CrossRef]
- Ma, H.C.; Mao, X.; Deng, A.P. Resonance solutions and hybrid solutions of an extended (2+1)-dimensional Kadomtsev-Petviashvili equation in fluid mechanics. Nonlinear Dynam. 2023, 111, 13439–13455. [Google Scholar] [CrossRef]
- Huma, Z.E.; Butt, A.R.; Alaoui, M.K.; Raza, N.; Baleanu, D. Breather waves, periodic cross-lump waves and complexiton type solutions for the (2+1)-dimensional Kadomtsev-Petviashvili equation in dispersive media. Phys. Lett. A 2024, 501, 129373. [Google Scholar] [CrossRef]
- Kumar, D.; Saharan, A.; Kumar, P. Dynamical analysis of soliton wave solutions of (2+1)-dimensional Kadomtsev-Petviashvili (KP) equation through two efficient analytical techniques. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Senol, M.; Gencyigit, M.; Houwe, A. Analytical and numerical simulation of the conformable new extended (2+1) dimensional Kadomtsev-Petviashvili equation. Numer. Heat Tr. B-Fund. 2023, 85, 1287–1303. [Google Scholar] [CrossRef]
- Cai, R.X.; Liu, Q.B. A new method for deriving analytical solutions of partial differential equations-algebraically explicit analytical solutions of two-buoyancy natural convection in porous media. Sci. China Ser. G 2008, 51, 1733–1744. [Google Scholar] [CrossRef]
- He, C.H.; He, J.H.; Sedighi, H.M.; El-Dib, Y.O.; Marinkovic, D.; Alsolami, A.A. Editorial: Analytical methods for nonlinear oscillators and solitary waves. Front. Phys. 2023, 11, 1309182. [Google Scholar] [CrossRef]
- Zulffqar, A.; Ahmad, J.; Ul-Hassan, Q.M. Analysis of some new wave solutions of fractional order generalized Pochhammer-Chree equation using exp-function method. Opt. Quant. Electron. 2022, 54, 735. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.Q. Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 2011, 375, 1069–1073. [Google Scholar] [CrossRef]
- Murad, M.A.S.; Ismael, H.F.; Hamasalh, F.K.; Shah, N.A.; Eldin, S.M. Optical soliton solutions for time-fractional Ginzburg-Landau equation by a modified sub-equation method. Results Phys. 2023, 53, 106950. [Google Scholar] [CrossRef]
- Sahoo, S.; Ray, S.S. Improved fractional sub-equation method for (3+1)-dimensional generalized fractional KdV-Zakharov-Kuznetsov equations. Comput. Math. Appl. 2015, 70, 158–166. [Google Scholar] [CrossRef]
- Baleanu, D.; Inc, M.; Yusuf, A.; Aliyu, A.I. Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation. Commun. Nonlinear Sci. 2018, 59, 222–234. [Google Scholar] [CrossRef]
- Wang, G.W.; Kara, A.H.; Fakhar, K. Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation. Nonlinear Dynam. 2015, 82, 281–287. [Google Scholar] [CrossRef]
- Sahadevan, R.; Bakkyaraj, T. Invariant analysis of time fractional generalized burgers and Korteweg-de Vries equations. J. Math. Anal. Appl. 2012, 393, 341–347. [Google Scholar] [CrossRef]
- He, J.H.; Elagan, S.K.; Li, Z.B. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 2012, 376, 257–259. [Google Scholar] [CrossRef]
- Ain, Q.T.; He, J.H.; Anjum, N.; Ali, M. The fractional complex transform: A novel approach to the time-fractional Schrödinger equation. Fractals 2020, 28, 2050141. [Google Scholar] [CrossRef]
- Lou, S.Y. Consistent Riccati expansion for integrable systems. Stud. Appl. Math. 2015, 134, 372–402. [Google Scholar] [CrossRef]
- Ren, B.; Lin, J.; Lou, Z.M. Consistent Riccati expansion and rational solutions of the Drinfel’d-Sokolov-Wilson equation. Appl. Math. Lett. 2020, 105, 106326. [Google Scholar] [CrossRef]
- Lou, S.Y.; Ma, H.C. Non-lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method. J. Phys. A Math. Gen. 2005, 38, 129–137. [Google Scholar] [CrossRef]
- Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: New York, NY, USA, 2004. [Google Scholar]
- Baskonus, H.M.; Mahmud, A.A.; Muhamad, K.A.; Tanriverdi, T. A study on Caudrey-Dodd-Gibbon-Sawada-Kotera partial differential equation. Math. Method Appl. Sci. 2022, 45, 8737–8753. [Google Scholar] [CrossRef]
- Ansar, R.; Abbas, M.; Emadifar, H.; Nazir, T.; Alzaidi, A.S.M. A dynamical behavior of the coupled Broer-Kaup-Kupershmidt equation using two efficient analytical techniques. PLoS ONE 2024, 19, e0296640. [Google Scholar] [CrossRef]
- Jorwal, P.; Arif, M.; Kumar, D. An enormous diversity of soliton solutions to the (2+1)-dimensional extended shallow water wave equation using three analysis methods. Int. J. Mod. Phys. B 2023, 10, 1142. [Google Scholar]
- Mumtaz, A.; Shakeel, M.; Manan, A.; Shah, N.A.; Ahmed, S.F. A comparative study of new traveling wave solutions for the (2+1)-dimensional fractional Wazwaz Kaur Boussinesq equation using novel modified (G′/G2)-expansion method. AIP Adv. 2025, 15, 035204. [Google Scholar] [CrossRef]
- Chen, H.T.; Zhang, H.Q. New double periodic and multiple soliton solutions of the generalized (2+1)-dimensional Boussinesq equation. Chaos Solitons Fractals 2004, 20, 765–769. [Google Scholar]
- Zhang, L.H. Travelling wave solutions for the generalized Zakharov-Kuznetsov equation with higher-order nonlinear terms. Appl. Math. Comput. 2009, 208, 144–155. [Google Scholar] [CrossRef]
- Ma, H.C.; Lou, S.Y. Finite symmetry transformation groups and exact solutions of Lax integrable systems. Commun. Theor. Phys. 2005, 44, 193–196. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Chong, S.; Jiao, H.; Shen, B.; Wang, G. New Interaction Patterns for the Truncated M-Fractional Kadomtsev–Petviashvili Equation in High-Dimensional Space. Fractal Fract. 2025, 9, 572. https://doi.org/10.3390/fractalfract9090572
Zhang L, Chong S, Jiao H, Shen B, Wang G. New Interaction Patterns for the Truncated M-Fractional Kadomtsev–Petviashvili Equation in High-Dimensional Space. Fractal and Fractional. 2025; 9(9):572. https://doi.org/10.3390/fractalfract9090572
Chicago/Turabian StyleZhang, Lihua, Shuqi Chong, Hongbing Jiao, Bo Shen, and Gangwei Wang. 2025. "New Interaction Patterns for the Truncated M-Fractional Kadomtsev–Petviashvili Equation in High-Dimensional Space" Fractal and Fractional 9, no. 9: 572. https://doi.org/10.3390/fractalfract9090572
APA StyleZhang, L., Chong, S., Jiao, H., Shen, B., & Wang, G. (2025). New Interaction Patterns for the Truncated M-Fractional Kadomtsev–Petviashvili Equation in High-Dimensional Space. Fractal and Fractional, 9(9), 572. https://doi.org/10.3390/fractalfract9090572