Fractional Boundary Value Problems with Parameter-Dependent and Asymptotic Conditions
Abstract
1. Introduction
2. Bounded Solutions of FDEs with Asymptotic Conditions
3. Analysis of the Parameter-Dependent FIBVP on a Finite Interval
3.1. Problem Setting and Interval Splitting
3.2. Successive Approximations
- (i)
- The function is bounded:
- (ii)
- The function is Lipschitz continuous in , i.e.
- (iii)
- The set
- (iv)
- The inequality holds for , which is defined as
3.3. Connection of the Limit Function to the FIBVP
4. Solvability Analysis
4.1. Sufficient Conditions
4.2. Necessary Conditions
5. Example
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Samko, S.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Philladelphia, PA, USA, 1993. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J. Theory of Fractional Dynamical Systems; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
- Stinga, P. Fractional derivatives: Fourier, elephants, memory effects, viscoelastic materials, and anomalous diffusions. Not. Am. Math. Soc. 2023, 70, 576–587. [Google Scholar] [CrossRef]
- Adolfsson, K.; Enelund, M.; Olsson, P. On the fractional order model of viscoelasticity. Mech. Time-Depend. Mater. 2005, 9, 15–34. [Google Scholar] [CrossRef]
- Sasso, M.; Palmieri, G.; Amodio, D. Application of fractional derivative models in linear viscoelastic problems. Mech. Time-Depend. Mater. 2011, 5, 367–387. [Google Scholar] [CrossRef]
- Zhou, X.Q.; Yu, D.Y.; Shao, X.Y.; Zhang, S.Q.; Wang, S. Research and applications of viscoelastic vibration damping materials: A review. Compos. Struct. 2016, 136, 460–480. [Google Scholar] [CrossRef]
- Wang, B.; Kari, L. A nonlinear constitutive model by spring, fractional derivative and modified bounding surface model to represent the amplitude, frequency and the magnetic dependency for magneto-sensitive rubber. J. Sound Vib. 2019, 438, 344–352. [Google Scholar] [CrossRef]
- Straka, P.; Meerschaert, M.M.; McGough, R.J.; Zhou, Y. Fractional wave equations with attenuation. Fract. Calc. Appl. Anal. 2013, 16, 262–272. [Google Scholar] [CrossRef]
- Xing, G.; Zhu, T. Modeling frequency-independent Q viscoacoustic wave propagation in heterogeneous media. J. Geophys. Res. Solid Earth 2019, 124, 11568–11584. [Google Scholar] [CrossRef]
- Abdon, A.; Necdet, B. The use of fractional order derivative to predict the groundwater flow. Math. Probl. Eng. 2013, 2013, 543026. [Google Scholar] [CrossRef]
- Feulefack, P.; Djida, J. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discret. Contin. Dyn. Syst.-B 2019, 24, 3227–3247. [Google Scholar] [CrossRef]
- Gerolymatou, E.; Vardoulakis, I.; Hilfer, R. Modelling infiltration by means of a nonlinear fractional diffusion model. J. Phys. D Appl. Phys. 2006, 39, 4104. [Google Scholar] [CrossRef]
- Sun, Y.; Sumelka, W. Fractional viscoplastic model for soils under compression. Acta Mech. 2019, 230, 3365–3377. [Google Scholar] [CrossRef]
- Metzler, R.; Glöckle, W.; Nonnenmacher, T. Fractional model equation for anomalous diffusion. Phys. A Stat. Mech. Appl. 1994, 211, 13–24. [Google Scholar] [CrossRef]
- Tateishi, A.; Ribeiro, H.; Lenzi, E. The role of fractional time-derivative operators on anomalous diffusion. Front. Phys. 2017, 5, 52. [Google Scholar] [CrossRef]
- Dentz, M.; Hyman, J.H. The hidden structure of hydrodynamic transport in random fracture networks. J. Fluid Mech. 2023, 977, A38. [Google Scholar] [CrossRef]
- Sherman, T.; Engdahl, N.B.; Porta, G.; Bolster, D. A review of spatial Markov models for predicting pre-asymptotic and anomalous transport in porous and fractured media. J. Contam. Hydrol. 2021, 236, 103734. [Google Scholar] [CrossRef] [PubMed]
- Ronto, M.; Samoilenko, A. Numerical-Analytic Methods in the Theory of Boundary Value Problems; World Scientific Publishing Co.: River Edge, NJ, USA, 2000. [Google Scholar]
- Ronto, M.; Marynets, K. Parametrization of non-linear problems with integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2012, 99, 1–23. [Google Scholar] [CrossRef]
- Ronto, M.I.; Marynets, K. On the parametrization of boundary-value problems with two-point nonlinear boundary conditions. Nonlinear Oscil. 2012, 14, 379–413. [Google Scholar] [CrossRef]
- Marynets, K. On the Cauchy-Nicoletti type two-point boundary value problem for fractional differential systems. Differ. Equ. Dyn. Syst. 2023, 31, 847–867. [Google Scholar] [CrossRef]
- Fečkan, M.; Marynets, K.; Wang, J. Periodic boundary value problems for higher order fractional differential systems. Math. Methods Appl. Sci. 2019, 42, 3616–3632. [Google Scholar] [CrossRef]
- Marynets, K.; Pantova, D. Approximation approach to the fractional BVP with the Dirichlet type boundary conditions. Differ. Equ. Dyn. Syst. 2022, 32, 1047–1066. [Google Scholar] [CrossRef]
- Marynets, K.; Pantova, D. Successive approximations and interval halving for fractional BVPs with integral boundary conditions. J. Comp. Appl. Math. 2023, 436, 115361. [Google Scholar] [CrossRef]
- Voller, V. Fractional Stefan Problems. Int. J. Heat Mass Transf. 2014, 74, 269–277. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, X. Laplace transform methods for a free boundary problem of time-fractional PDE system. Discret. Dyn. Nat. Soc. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Chen, W.; Du, K.; Qiu, X. Analytic properties of American option prices under a modified Black–Scholes equation with spatial fractional derivatives. Phys. A Stat. Mech. Appl. 2018, 491, 37–44. [Google Scholar] [CrossRef]
- Płociniczak, L.; Świtała, M. Existence and uniqueness results for a time-fractional nonlinear diffusion equation. J. Math. Anal. Appl. 2018, 462, 1425–1434. [Google Scholar] [CrossRef]
- Płociniczak, L.; Świtała, M. Analytic solution of the free boundary problem for porous media flow using a conformal map validated by the boundary element method. Eng. Anal. Bound. Elem. 2024, 166, 105806. [Google Scholar]
- Wazwaz, A. The variational iteration method for analytic treatment for linear and nonlinear ODEs. Comput. Appl. Math. 2009, 212, 120–134. [Google Scholar] [CrossRef]
- He, J. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- Agarwal, R.; O’Regan, D. Infinite interval problems arising in non-linear mechanics and non-Newtonian fluid flows. Int. J. Non-Linear Mech. 2003, 38, 1369–1376. [Google Scholar] [CrossRef]
- Agarwal, R.; Mustafa, O.; Rogovchenko, Y. Existence and asymptotic behavior of solutions of a boundary value problem on an infinite interval. Math. Comput. Model. 2005, 41, 135–157. [Google Scholar] [CrossRef]
- Chu, J.; Liang, Z. Bounded solutions of a nonlinear second order differential equation with asymptotic conditions modeling ocean flows. Nonlinear Anal. Real World Appl. 2018, 41, 538–548. [Google Scholar] [CrossRef]
- Arara, A.; Benchohra, M.; Hamidi, N.; Nieto, J.J. Fractional order differential equations on an unbounded domain. Nonlinear Anal. Theory Methods Appl. 2010, 72, 580–586. [Google Scholar] [CrossRef]
- Wang, G.; Cabada, A.; Zhang, L. An integral boundary value problem for nonlinear differential equations of fractional order on an unbounded domain. J. Integral Equ. Appl. 2014, 26, 117–129. [Google Scholar] [CrossRef]
- Su, X. Solutions to boundary value problem of fractional order on unbounded domains in a Banach space. Nonlinear Anal. Theory Methods Appl. 2011, 74, 2844–2852. [Google Scholar] [CrossRef]
- Liang, S.; Shi, S. Existence of multiple positive solutions for m-point fractional boundary value problems with p-Laplacian operator on infinite interval. J. Appl. Math. Comput. 2012, 38, 687–707. [Google Scholar] [CrossRef]
- He, J.; El-Dib, Y.O. A Tutorial Introduction To The Two-Scale Fractal Calculus And Its Application To The Fractal Zhiber-Shabat Oscillator. Fractals 2021, 29, 2150268. [Google Scholar] [CrossRef]
- He, J.H.; Ain, Q.T. New promises and future challenges of fractal calculus: From two-scale thermodynamics to fractal variational principle. Therm. Sci. 2020, 24, 659–681. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and applica- tion to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Zeidler, E. Nonlinear Functional Analysis and Its Applications, I. Fixed-Point Theorems; Springer: New York, NY, USA, 1986. [Google Scholar]
- Farkas, M. Periodic Motions; Springer New York: New York, NY, USA, 1994. [Google Scholar]
- Chu, J. On a differential equation arising in geophysics. Monatsh. Math. 2018, 187, 499–508. [Google Scholar] [CrossRef]
- Constantin, A.; Johnson, R.S. The dynamics of waves interacting with the Equatorial Undercurrent. Geophys. Astrophys. Fluid Dyn. 2015, 109, 311–358. [Google Scholar] [CrossRef]
- Baleanu, D. Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos; World Scientific: Boston, MA, USA, 2012. [Google Scholar]
- Goedegebure, N.; Marynets, K. A numerical Bernstein splines approach for nonlinear initial value problems with Hilfer fractional derivative. arXiv 2025. [Google Scholar] [CrossRef]
m | ||
---|---|---|
0 | ||
1 | ||
2 | ||
3 | ||
4 | ||
5 |
m | ||
---|---|---|
0 | ||
1 | ||
2 | ||
3 | ||
4 | ||
5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marynets, K.; Pantova, D. Fractional Boundary Value Problems with Parameter-Dependent and Asymptotic Conditions. Fractal Fract. 2025, 9, 462. https://doi.org/10.3390/fractalfract9070462
Marynets K, Pantova D. Fractional Boundary Value Problems with Parameter-Dependent and Asymptotic Conditions. Fractal and Fractional. 2025; 9(7):462. https://doi.org/10.3390/fractalfract9070462
Chicago/Turabian StyleMarynets, Kateryna, and Dona Pantova. 2025. "Fractional Boundary Value Problems with Parameter-Dependent and Asymptotic Conditions" Fractal and Fractional 9, no. 7: 462. https://doi.org/10.3390/fractalfract9070462
APA StyleMarynets, K., & Pantova, D. (2025). Fractional Boundary Value Problems with Parameter-Dependent and Asymptotic Conditions. Fractal and Fractional, 9(7), 462. https://doi.org/10.3390/fractalfract9070462