Double Local Fractional Yang–Laplace Transform for Local Fractional PDEs on Fractal Domains
Abstract
1. Introduction
- Section 2 introduces the fundamental concepts and mathematical tools necessary for this study, including key definitions and properties of local fractional calculus and the local fractional Yang–Laplace transform.
- Section 3 presents the principal theoretical developments concerning the double local fractional Yang–Laplace transform, along with its core properties.
- Section 4 demonstrates the applicability of the proposed transform by solving representative local fractional partial differential equations, such as the local fractional diffusion equation and the local fractional Klein–Gordon equation.
- Section 5 concludes this paper with a summary of the main results, highlighting the theoretical and practical implications of this paper.
2. Fundamental Concepts
2.1. Local Fractional Derivative
Properties of Some Special Functions
2.2. Local Fractional Integral
2.3. Local Fractional Yang–Laplace Transform
3. Main Results
3.1. Linearity
3.2. Derivative
3.3. Convolution
3.4. Transform of Special Functions
- If then we have
- If then after the integration by parts, we getSinceConsequently, we get
- If then, using Formula (29) and Mittag–Leffler properties, we obtain
- If then, from (29), we obtainAfter straightforward computations, we get
- If we haveAfter performing the calculations, we obtain the following results:
- If using Formula (29), we obtainFinally, we get
4. Application of Double Local Fractional Yang–Laplace Transform
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barbero, G.; Evangelista, L.R.; Zola, R.S.; Lenzi, E.K.; Scarfone, A.M. A Brief Review of Fractional Calculus as a Tool for Applications in Physics: Adsorption Phenomena and Electrical Impedance in Complex Fluids. Fractal Fract. 2024, 8, 369. [Google Scholar] [CrossRef]
- Alhasan, A.S.H.; Saranya, S.; Al-Mdallal, Q.M. Fractional derivative modeling of heat transfer and fluid flow around a contracting permeable infinite cylinder:Computational study. Part. Differ. Equ. Appl. Math. 2024, 11, 100794. [Google Scholar]
- Rezapour, S.; Etemad, S.; Agarwal, R.P.; Nonlaopon, K. On a Lyapunov-Type Inequality for Control of a ψ-Model Thermostat and the Existence of Its Solutions. Mathematics 2022, 10, 4023. [Google Scholar] [CrossRef]
- Riabi, L.; Cherif, M.H.; Cattani, C. An Efficient Approach to Solving the Fractional SIR Epidemic Model with the Atangana-Baleanu-Caputo Fractional Operator. Fractal Fract. 2023, 7, 618. [Google Scholar] [CrossRef]
- Baleanu, D.; Mohammadi, H.; Rezapour, S. A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative. Adv. Differ. Equ. 2020, 2020, 299. [Google Scholar] [CrossRef]
- Jebreen, H.B.; Cattani, C. Solving Time-Fractional Partial Differential Equation Using Chebyshev Cardinal Functions. Axioms 2022, 11, 642. [Google Scholar] [CrossRef]
- Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fract. 2021, 144, 110668. [Google Scholar] [CrossRef]
- Al-Refai, M.; Baleanu, D. On an extension of the operator with Mittag-Leffler kernel. Fractals 2021, 12, 18. [Google Scholar] [CrossRef]
- Kolwankar, K.M.; Gangal, A.D. Fractional differentiability of nowhere differentiable functions and dimensions. Chaos 1996, 6, 505–513. [Google Scholar] [CrossRef]
- Kolwankar, K.M.; Gangal, A.D. Local Fractional Calculus: A Calculus for Fractal Space-Time: Theory and Applications in Engineering; Springer: Delft, The Netherlands, 1999; pp. 171–178. [Google Scholar]
- Jumarie, G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 2006, 6, 1367–1376. [Google Scholar] [CrossRef]
- Jumarie, G. Table of some basic fractional calculus formulae derived from a modified Riemann–Liouville derivative for non-differentiable functions. Appl. Math. Lett. 2009, 22, 378–385. [Google Scholar] [CrossRef]
- Yang, X.J. Advanced Local Fractional Calculus & Its Applications; World Science Publisher: New York, NY, USA, 2012. [Google Scholar]
- Yang, X.J. Fractional Functional Analysis and Its Applications; Asian Academic: Hong Kong, China, 2011. [Google Scholar]
- Yang, Y.J.; Yang, C.; Jin, X.F. The Yang Laplace transform-DJ iteration method for solving the local fractional differential equation. J. Nonlinear Sci. Appl. 2017, 10, 3023–3029. [Google Scholar] [CrossRef]
- Cattani, C.; Srivastava, H.M.; Yang, X.Y. Advanced Analysis of Local Fractional Calculus Applied to the Rice Theory in Fractal Fracture Mechanics. In Studies in Systems, Decision and Control (SSDC, Volume 373); Part Book Series; Springer: Berlin/Heidelberg, Germany, 2021; Volume 373. [Google Scholar]
- Cattani, C. Cantor Waves for Signorini Hyperelastic Materials with Cylindrical Symmetry. Axioms 2020, 9, 22. [Google Scholar] [CrossRef]
- Yang, X.J.; Gao, F.; Ju, Y. General Fractional Calculus with Nonsignular Kernels: New Prospective on Viscoelasticity. In Methods of Mathematical Modelling and Computation for Complex Systems; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- An, Y.; Ali, M.A.; Xu, C.J.; Liu, W.; Shi, F. Local fractional Ostrowski type inequalities for generalized s-φ-convex functions on fractal sets. Fractals 2025, 33, 2550020. [Google Scholar] [CrossRef]
- Andrews, L.C.; Shivamoggi, B.K. Integral Transforms for Engineers; SPIE-The International Society for Optical Engineering: Bellingham, WA, USA, 1999. [Google Scholar]
- Gangadharaiah, Y.H.; Sandeep, N. Engineering Applications of the Laplace Transform; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2021. [Google Scholar]
- Kang, D.; Kim, H.; Lee, B. General Definitions of Integral Transforms for Mathematical Physics. New Phys. Sae Mulli 2020, 70, 759–765. [Google Scholar] [CrossRef]
- Eshag, M.O. On Double Laplace Transform and Double Sumudu Transform. Am. J. Eng. Res. 2017, 6, 312–317. [Google Scholar]
- Ahmed, S.A.; Elzaki, T.M.; Elbadri, M.; Mohamed, M.Z. Solution of partial differential equations by new double integral transform (Laplace-Sumudu transform). Ain Shams Eng. J. 2021, 12, 4045–4049. [Google Scholar] [CrossRef]
- Elzaki, T.M.; Ahmed, S.A. Applications of new double integral transform (Laplace-Sumudu transform) in mathematical physics. Abstr. Appl. Anal. 2021, 2021, 6625247. [Google Scholar] [CrossRef]
- Eltayeba, H.; Meslouba, S.; Kılıcmanb, A. A note on a singular coupled Burgers equation and double Laplace transform method. J. Nonlinear Sci. Appl. 2018, 11, 635–643. [Google Scholar] [CrossRef]
- Abdullah, A.A.; Ahmad, A. The solution of poisson partial differential equations via Double Laplace Transform Method. Part. Differ. Equ. Appl. Math. 2021, 4, 100058. [Google Scholar]
- Injrou, S.; Hatem, I. Solving Some Partial Differential Equations by Using Double Laplace Transform in the Sense of Nonconformable Fractional Calculus. Math. Probl. Eng. 2022, 5, 1–10. [Google Scholar] [CrossRef]
- Dhunde, R.R. Double Laplace Transform Method for Solving Fractional Fourth-Order Partial Integro-Differential Equations with Weakly Singular Kernel. Indian J. Sci. Technol. 2024, 17, 3712–3718. [Google Scholar] [CrossRef]
- Eltayeb, H. Application of double Sumudu-generalized Laplace decomposition method and two-Dimensional time-fractional coupled Burger’s equation. Bound. Value Probl. 2024, 48, 1–27. [Google Scholar] [CrossRef]
- Dhunde, R.R.; Bhondge, N.M.; Dhongle, P.R. Some Remarks on the Properties of Double Laplace Transforms. Int. J. Appl. Phys. Math. 2013, 3, 293–295. [Google Scholar] [CrossRef]
- Alderremya, A.A.; Elzakib, T.M. On the new double integral transform for solving singular system of hyperbolic equations. J. Nonlinear Sci. Appl. 2018, 11, 1207–1214. [Google Scholar] [CrossRef]
- Elzaki, T.M.; Hilal, E.M.A. Solution of Telegraph Equation by Modified of Double Sumudu Transform “Elzaki Transform”. Math. Theory Model. 2012, 2, 95–103. [Google Scholar]
- Mahgob, M.M.A. Solution of Partial Integro-Differential Equations by Double Elzaki Transform Method. Math. Theory Model. 2015, 5, 61–66. [Google Scholar]
- Jain, R.K.; Bhargava, A. Application of Double Natural Transform to One-Dimensional Heat Equations. Appl. Math. Comput. Int. 2020, 9, 95–104. [Google Scholar]
- Kiliçman, A.; Omran, M. On double Natural transform and its applications. J. Nonlinear Sci. Appl. 2017, 10, 1744–1754. [Google Scholar] [CrossRef]
- Alfaqeih, S.; Misirli, E. On Double Shehi Transform and Its Properties With Applications. Int. J. Anal. Appl. 2020, 18, 381–395. [Google Scholar]
- Alfaqeih, S.; Bakıcıerler, G.; Misirli, E. Application of Double Shehu Transforms to Caputo Fractional Partial Differential Equations. Punjab Univ. J. Math. 2022, 54, 1–13. [Google Scholar] [CrossRef]
- Omran, M.; Kiliçman, A. Fractional double Laplace transform and its properties. In Proceedings of the ICWOMA2016; AIP Conference Proceedings: Melville, NY, USA, 2017. [Google Scholar]
- Yang, A.M.; Yang, X.J.; Li, Z.B. Local Fractional Series Expansion Method for Solving Wave and Diffusion Equations on Cantor Sets. Abstr. Appl. Anal. 2013, 2013, 351057. [Google Scholar] [CrossRef]
- Khalid, M.; Sultana, M.; Zaidi, F.; Uroosa, A. Solving Linear and Nonliear Klein-Gorden Equations by New Perturbation Iteration Transform Method. TWMS J. Appl. Eng. Math. 2016, 6, 115–125. [Google Scholar]
Remarks | ||
---|---|---|
c | c is a constant | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziane, D.; Hamdi Cherif, M.; Cattani, C.; Djaouti, A.M. Double Local Fractional Yang–Laplace Transform for Local Fractional PDEs on Fractal Domains. Fractal Fract. 2025, 9, 434. https://doi.org/10.3390/fractalfract9070434
Ziane D, Hamdi Cherif M, Cattani C, Djaouti AM. Double Local Fractional Yang–Laplace Transform for Local Fractional PDEs on Fractal Domains. Fractal and Fractional. 2025; 9(7):434. https://doi.org/10.3390/fractalfract9070434
Chicago/Turabian StyleZiane, Djelloul, Mountassir Hamdi Cherif, Carlo Cattani, and Abdelhamid Mohammed Djaouti. 2025. "Double Local Fractional Yang–Laplace Transform for Local Fractional PDEs on Fractal Domains" Fractal and Fractional 9, no. 7: 434. https://doi.org/10.3390/fractalfract9070434
APA StyleZiane, D., Hamdi Cherif, M., Cattani, C., & Djaouti, A. M. (2025). Double Local Fractional Yang–Laplace Transform for Local Fractional PDEs on Fractal Domains. Fractal and Fractional, 9(7), 434. https://doi.org/10.3390/fractalfract9070434