Reconstructing the Heat Transfer Coefficient in the Inverse Fractional Stefan Problem
Abstract
:1. Introduction
2. Problem Formulation
3. Solution to the Inverse Problem
- J—minimized function (or fitness function); n—dimension of the problem;x
- —number of threads; —number of ants in the population;
- I—number of iterations; L—number of pheromone spots; —algorithm tuning parameters.
- Initialization of the algorithm
- Setting the input parameters: .
- Random generation of L initial pheromone spots in the search space. Adding the generated pheromone spots to the initial archive .
- Calculating the values of the fitness function for all the generated solutions (pheromone spots) and sorting the archive elements from the best to the worst solution.
- The iteration process
- 4.
- Assigning the selection probability to each solution using the formula
- 5.
- Choosing by ant the l-th solution with the probability .
- 6.
- Transforming the j-th coordinate () of the l-th solution by sampling the neighbourhood using the Gauss probability density function
- 7.
- Steps 5–6 are repeated by every ant. In this way, M new solutions (pheromone spots) are created.
- 8.
- The partition of the set of new solutions into groups. Calculating the value of the fitness function for each of the new solutions (parallel computation).
- 9.
- Adding the new solutions to the archive , sorting them by quality and rejecting the M worst solutions.
- 10.
- Steps 3–9 are repeated I times.
4. Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Xu, M. An exact solution to the moving boundary problem with fractional anomalous diffusion in drug release devices. ZAMM J. Appl. Math. Mech. 2004, 84, 22–28. [Google Scholar] [CrossRef]
- Yin, C.; Li, X. Anomalous diffusion of drug release from a slab matrix: Fractional diffusion models. Int. J. Pharm. 2011, 418, 78–87. [Google Scholar] [CrossRef]
- Garshasbi, M.; Sanaei, F. A variable time-step method for a space fractional diffusion moving boundary problem: An application to planar drug release devices. Int. J. Numer. Model. 2021, 34, e2852. [Google Scholar] [CrossRef]
- Rajeev; Kushwaha, M.; Kumar, A. An approximate solution to a moving boundary problem with space-time fractional derivative in fluvio-deltaic sedimentation process. Ain Shames Eng. J. 2013, 4, 889–895. [Google Scholar] [CrossRef]
- Rajeev; Kushwaha, M. Homotopy perturbation method for a limit case Stefan problem governed by fractional diffusion equation. Appl. Math. Model. 2013, 37, 3589–3599. [Google Scholar] [CrossRef]
- Voller, V. Computations of anomalous phase change. Int. J. Numer. Methods Heat Fluid Flow 2016, 26, 624–638. [Google Scholar] [CrossRef]
- Voller, V. Anomalous heat transfer: Examples, fundamentals, and fractional calculus models. Adv. Heat Transf. 2018, 50, 333–380. [Google Scholar] [CrossRef]
- Liu, J.; Xu, M. Some exact solutions to Stefan problems with fractional differential equations. J. Math. Anal. Appl. 2009, 351, 536–542. [Google Scholar] [CrossRef]
- Roscani, S.; Tarzia, D.; Venturato, L. The similarity method and explicit solutions for the fractional space one-phase Stefan problems. Fract. Calc. Appl. Anal. 2022, 25, 995–1021. [Google Scholar] [CrossRef]
- Ryszewska, K. A space-fractional Stefan problem. Nonlinear Anal. 2020, 199, 112027. [Google Scholar] [CrossRef]
- Roscani, S.; Tarzia, D. Explicit solution for a two-phase fractional Stefan problem with a heat flux condition at the fixed face. Comput. Appl. Math. 2018, 37, 4757–4771. [Google Scholar] [CrossRef]
- Roscani, S.; Caruso, N.; Tarzia, D. Explicit solutions to fractional Stefan-like problems for Caputo and Riemann—Liouville derivatives. Commun. Nonlinear Sci. Numer. Simulat. 2020, 90, 105361. [Google Scholar] [CrossRef]
- Błasik, M.; Klimek, M. Numerical solution of the one phase 1D fractional Stefan problem using the front fixing method. Math. Methods Appl. Sci. 2015, 38, 3214–3228. [Google Scholar] [CrossRef]
- Błasik, M. Numerical scheme for one-phase 1D fractional Stefan problem using the similarity variable technique. J. Appl. Math. Comput. Mech. 2014, 13, 13–21. [Google Scholar] [CrossRef]
- Gao, X.; Jiang, X.; Chen, S. The numerical method for the moving boundary problem with space-fractional derivative in drug release devices. Appl. Math. Model. 2015, 39, 2385–2391. [Google Scholar] [CrossRef]
- Błasik, M. A Numerical Method for the Solution of the Two-Phase Fractional Lamé-Clapeyron-Stefan Problem. Mathematics 2020, 8, 2157. [Google Scholar] [CrossRef]
- Rajeev; Singh, A. Homotopy analysis method for a fractional Stefan problem. Nonlinear Sci. Lett. A 2017, 8, 50–59. [Google Scholar]
- Voller, V.; Falcini, F.; Garra, R. Fractional Stefan problems exhibiting lumped and distributed latent-heat memory effects. Phys. Rev. E 2013, 87, 042401. [Google Scholar] [CrossRef]
- Ceretani, A.; Tarzia, D. Determination of two unknown thermal coefficients through an inverse one-phase fractional Stefan problem. Fract. Calc. Appl. Anal. 2017, 20, 399–421. [Google Scholar] [CrossRef]
- Słota, D.; Chmielowska, A.; Brociek, R.; Szczygieł, M. Application of the Homotopy Method for Fractional Inverse Stefan Problem. Energies 2020, 13, 5474. [Google Scholar] [CrossRef]
- Chmielowska, A.; Słota, D. Fractional Stefan Problem Solving by the Alternating Phase Truncation Method. Symmetry 2022, 14, 2287. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar] [CrossRef]
- Hristov, J. Approximate solutions to fractional subdiffusion equations. Eur. Phys. J. Spec. Top. 2011, 193, 229–243. [Google Scholar] [CrossRef]
- Brociek, R.; Słota, D.; Król, M.; Matula, G.; Kwaśny, W. Comparison of mathematical models with fractional derivative for the heat conduction inverse problem based on the measurements of temperature in porous aluminum. Int. J. Heat Mass Transf. 2019, 143, 118440. [Google Scholar] [CrossRef]
- Brociek, R.; Wajda, A.; Błasik, M.; Słota, D. An Application of the Homotopy Analysis Method for the Time- or Space-Fractional Heat Equation. Fractal Fract. 2023, 7, 224. [Google Scholar] [CrossRef]
- Socha, K.; Dorigo, M. Ant colony optimization for continuous domains. Eur. J. Oper. Res. 2008, 185, 1155–1173. [Google Scholar] [CrossRef]
- Brociek, R.; Wajda, A.; Słota, D. Comparison of Heuristic Algorithms in Identification of Parameters of Anomalous Diffusion Model Based on Measurements from Sensors. Sensors 2023, 23, 1722. [Google Scholar] [CrossRef]
Noise | Intervals | J | |||
---|---|---|---|---|---|
s | |||||
s | |||||
s | |||||
s | |||||
s | |||||
s | |||||
s | |||||
s | |||||
s |
Noise | Intervals | [K] | [K] | [%] | [%] |
---|---|---|---|---|---|
s | |||||
s | |||||
s | |||||
s | |||||
s | |||||
s | |||||
s | |||||
s | |||||
s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmielowska, A.; Brociek, R.; Słota, D. Reconstructing the Heat Transfer Coefficient in the Inverse Fractional Stefan Problem. Fractal Fract. 2025, 9, 43. https://doi.org/10.3390/fractalfract9010043
Chmielowska A, Brociek R, Słota D. Reconstructing the Heat Transfer Coefficient in the Inverse Fractional Stefan Problem. Fractal and Fractional. 2025; 9(1):43. https://doi.org/10.3390/fractalfract9010043
Chicago/Turabian StyleChmielowska, Agata, Rafał Brociek, and Damian Słota. 2025. "Reconstructing the Heat Transfer Coefficient in the Inverse Fractional Stefan Problem" Fractal and Fractional 9, no. 1: 43. https://doi.org/10.3390/fractalfract9010043
APA StyleChmielowska, A., Brociek, R., & Słota, D. (2025). Reconstructing the Heat Transfer Coefficient in the Inverse Fractional Stefan Problem. Fractal and Fractional, 9(1), 43. https://doi.org/10.3390/fractalfract9010043