Analysis of Infection and Diffusion Coefficient in an SIR Model by Using Generalized Fractional Derivative
Abstract
:1. Introduction
2. Pre-Requisites
2.1. Riemann–Liouville’s Fractional Operator
2.2. Caputo–Fabrizio Fractional Derivative
2.3. Atangana–Baleanu Fractional Derivative
2.4. Laplace Transform
2.4.1. Laplace Transform of Riemann–Liouville Fractional Differential Operator
2.4.2. Laplace Transform of Caputo–Fabrizio Fractional Differential Operator
2.4.3. Laplace Transform of Atangana–Baleanu Fractional Differential Operator
3. SIR Model
4. Existence and Uniqueness of Result
4.1. In Caputo–Fabrizio Derivative Case
4.1.1. Theorem 1
4.1.2. Theorem 2
4.1.3. Theorem 3
4.2. Uniqueness of Result
5. Solution of SIR Model Based on General Fractional Derivative by Using Laplace Transform
5.1. Case I: Caputo–Fabrizio Operator
5.2. Case II: Riemann–Liouville’s Operator
5.3. Case III: Atangana–Baleanu Operator
6. Numerical and Graphical Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asif, M.; Jan, S.U.; Haider, N.; Al-Mdallal, Q.; Abdeljawad, T. Numerical modeling of npz and sir models with and without diffusion. Results Phys. 2020, 19, 103512. [Google Scholar] [CrossRef]
- Asif, M.; Khan, Z.A.; Haider, N.; Al-Mdallal, Q. Numerical simulation for solution of SEIR models by meshless and finite difference methods. Chaos Solitons Fractals 2020, 141, 110340. [Google Scholar] [CrossRef]
- Ahmed, N.; Ali, M.; Rafiq, M.; Khan, I.; Nisar, K.S.; Rehman, M.A.; Ahmad, M.O. A numerical efficient splitting method for the solution of two dimensional susceptible infected recovered epidemic model of whooping cough dynamics: Applications in bio-medical engineering. Comput. Methods Programs Biomed. 2020, 190, 105350. [Google Scholar] [CrossRef] [PubMed]
- Ergen, K.; Çilli, A.; Yahnıoğlu, N. Predicting epidemic diseases using mathematical modelling of SIR. Acta Phys. Pol. 2015, 128. [Google Scholar] [CrossRef]
- Alqarni, M.M.; Nasir, A.; Alyami, M.A.; Raza, A.; Awrejcewicz, J.; Rafiq, M.; Ahmed, N.; Shaikh, T.S.; Mahmoud, E.E. A SEIR Epidemic Model of Whooping Cough-Like Infections and Its Dynamically Consistent Approximation. Complexity 2022, 2022, 3642444. [Google Scholar] [CrossRef]
- González-Parra, G.; Arenas, A.J.; Chen-Charpentier, B.M. Combination of nonstandard schemes and Richardson’s extrapolation to improve the numerical solution of population models. Math. Comput. Model. 2010, 52, 1030–1036. [Google Scholar] [CrossRef]
- Dang, Q.A.; Hoang, M.T. Nonstandard finite difference schemes for a general predator–prey system. J. Comput. Sci. 2019, 36, 101015. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Koca, I. Analysis of rubella disease model with non-local and non-singular fractional derivatives. Int. J. Optim. Control. Theor. Appl. (IJOCTA) 2018, 8, 17–25. [Google Scholar] [CrossRef]
- Yavuz, M.; Özdemir, N. Analysis of an epidemic spreading model with exponential decay law. Math. Sci. Appl.-Notes 2020, 8, 142–154. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Yadav, S.K.; Purohit, M.; Gour, M.M.; Yadav, L.K.; Mishra, M.N. Hybrid technique for multi-dimensional fractional diffusion problems involving Caputo–Fabrizio derivative. Int. J. Math. Ind. 2024, 2450020. [Google Scholar] [CrossRef]
- El-Dessoky, M.M.; Khan, M.A. Modeling and analysis of an epidemic model with fractal-fractional Atangana-Baleanu derivative. Alex. Eng. J. 2022, 61, 729–746. [Google Scholar] [CrossRef]
- Khan, M.A.; Ullah, S.; Kumar, S. A robust study on 2019-nCOV outbreaks through non-singular derivative. Eur. Phys. J. Plus. 2021, 136, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Alazman, I.; Mishra, M.N.; Alkahtani, B.S.; Goswami, P. Computational analysis of rabies and its solution by applying fractional operator. Appl. Math. Sci. Eng. 2024, 32, 2340607. [Google Scholar] [CrossRef]
- Owolabi, K.M.; Atangana, A. Mathematical modelling and analysis of fractional epidemic models using derivative with exponential kernel. In Fractional Calculus in Medical and Health Science; CRC Press: Boca Raton, FL, USA, 2020; pp. 109–128. [Google Scholar]
- Nisar, K.S.; Farman, M.; Abdel-Aty, M.; Cao, J. A review on epidemic models in sight of fractional calculus. Alex. Eng. J. 2023, 75, 81–113. [Google Scholar] [CrossRef]
- Djennadi, S.; Shawagfeh, N.; Osman, M.S.; Gómez-Aguilar, J.F.; Arqub, O.A. The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique. Phys. Scr. 2021, 96, 094006. [Google Scholar] [CrossRef]
- Alzahrani, E.O.; Khan, M.A. Comparison of numerical techniques for the solution of a fractional epidemic model. Eur. Phys. J. Plus 2020, 135, 110. [Google Scholar] [CrossRef]
- Dhandapani, P.B.; Thippan, J.; Baleanu, D.; Sivakumar, V. On a novel fuzzy fractional retarded delay epidemic model. AIMS Math. 2022, 7, 10122–10142. [Google Scholar] [CrossRef]
- Areshi, M.; Goswami, P.; Mishra, M.N. Comparative study of blood sugar–insulin model using fractional derivatives. J. Taibah Univ. Sci. 2024, 18, 2339009. [Google Scholar] [CrossRef]
- Taghvaei, A.; Georgiou, T.T.; Norton, L.; Tannenbaum, A. Fractional SIR epidemiological models. Sci. Rep. 2020, 10, 20882. [Google Scholar] [CrossRef]
- Dubey, R.S.; Mishra, M.N.; Goswami, P. Systematic Analysis of Oxygen Diffusion Problem having Local Fractional Derivative.
- Baleanu, D.; Mohammadi, H.; Rezapour, S. Analysis of the model of HIV-1 infection of CD4+ T-cell with a new approach of fractional derivative. Adv. Differ. Equations 2020, 2020, 71. [Google Scholar] [CrossRef]
- Kumawat, N.; Shukla, A.; Mishra, M.N.; Sharma, R.; Dubey, R.S. Khalouta Transform and Applications to Caputo-Fractional Differential Equations. Front. Appl. Math. Stat. 2024, 10, 1351526. [Google Scholar] [CrossRef]
- Liu, X.; ur Rahmamn, M.; Ahmad, S.; Baleanu, D.; Nadeem Anjam, Y. A new fractional infectious disease model under the non-singular Mittag–Leffler derivative. Waves Random Complex Media 2022, 1–27. [Google Scholar] [CrossRef]
- Yang, X.J.; Baleanu, D.; Srivastava, H.M. Local Fractional Integral Transforms and Their Applications; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Alazman, I.; Alkahtani, B.S.T.; Rahman, M.U.; Mishra, M.N. Nonlinear complex dynamical analysis and solitary waves for the (3+1)-D nonlinear extended Quantum Zakharov–Kuznetsov equation. Results Phys. 2024, 58, 107432. [Google Scholar] [CrossRef]
- Ammi, M.R.S.; Tahiri, M.; Torres, D.F. Necessary optimality conditions of a reaction-diffusion SIR model with ABC fractional derivatives. arXiv 2021, arXiv:2106.15055. [Google Scholar] [CrossRef]
- Losada, J.; Nieto, J.J. Properties of a new fractional derivative without singular kernel. Progr. Fract. Differ. Appl 2015, 1, 87–92. [Google Scholar]
- Zhenzhen, L.; Yongguang, Y.; Weiyi, X.; Guojian, R.; Xiangyun, M. Global dynamics for a class of discrete fractional epidemic model with reaction-diffusion. arXiv 2022, arXiv:2208.06548. [Google Scholar]
- Sidi Ammi, M.R.; Tahiri, M.; Tilioua, M.; Zeb, A.; Khan, I.; Andualem, M. Global analysis of a time fractional order spatio-temporal SIR model. Sci. Rep. 2022, 12, 5751. [Google Scholar] [CrossRef]
- İlhan, Ö.; Şahin, G. A numerical approach for an epidemic SIR model via Morgan-Voyce series. Int. J. Math. Comput. Eng. 2024, 2, 125–140. [Google Scholar] [CrossRef]
- Kumar, M.; Jhinga, A.; Daftardar-Gejji, V. New algorithm for solving non-linear functional equations. Int. J. Appl. Comput. Math. 2020, 6, 26. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar] [CrossRef]
- Angstmann, C.N.; Henry, B.I.; McGann, A.V. A fractional-order infectivity and recovery SIR model. Fractal Fract. 2017, 1, 11. [Google Scholar] [CrossRef]
- Alòs, E.; Mancino, M.E.; Merino, R.; Sanfelici, S. A fractional model for the COVID-19 pandemic: Application to Italian data. Stoch. Anal. Appl. 2021, 39, 842–860. [Google Scholar] [CrossRef]
- Angstmann, C.N.; Henry, B.I.; McGann, A.V. A fractional-order infectivity SIR model. Phys. A Stat. Mech. Appl. 2016, 452, 86–93. [Google Scholar] [CrossRef]
- Singh, A.K.; Mehra, M.; Gulyani, S. A modified variable-order fractional SIR model to predict the spread of COVID-19 in India. Math. Methods Appl. Sci. 2023, 46, 8208–8222. [Google Scholar] [CrossRef]
- Singh, R.; Mishra, J.; Gupta, V.K. Dynamical analysis of a Tumor Growth model under the effect of fractal fractional Caputo-Fabrizio derivative. Int. J. Math. Comput. Eng. 2023, 1, 115–126. [Google Scholar] [CrossRef]
- Agarwal, H.; Mishra, M.N.; Dubey, R.S. On fractional Caputo operator for the generalized glucose supply model via incomplete Aleph function. Int. J. Math. Ind. 2024, 2024, 2450003. [Google Scholar] [CrossRef]
- Alqahtani, A.M.; Mishra, M.N. Mathematical Analysis of Streptococcus Suis Infection in Pig- Human Population by Riemann-Liouville Fractional Operator. Prog. Fract. Differ. Appl. 2024, 10, 119–135. [Google Scholar]
- Sabir, Z.; Umar, M. Levenberg-Marquardt backpropagation neural network procedures for the consumption of hard water-based kidney function. Int. J. Math. Comput. Eng. 2023, 1, 127–138. [Google Scholar] [CrossRef]
- Alqahtani, A.M.; Shukla, A. Computational analysis of multi-layered Navier–Stokes system by Atangana–Baleanu derivative. Appl. Math. Sci. Eng. 2024, 32, 2290723. [Google Scholar] [CrossRef]
- Moore, E.J.; Sirisubtawee, S.; Koonprasert, S. A Caputo–Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment. Adv. Differ. Equ. 2019, 2019, 200. [Google Scholar] [CrossRef]
- Luchko, Y.; Yamamoto, M. General time-fractional diffusion equation: Some uniqueness and existence results for the initial-boundary-value problems. Fract. Calc. Appl. Anal. 2016, 19, 676–695. [Google Scholar] [CrossRef]
- Yasin, M.W.; Ahmed, N.; Iqbal, M.S.; Rafiq, M.; Raza, A.; Akgül, A. Reliable numerical analysis for stochastic reaction-diffusion system. Phys. Scr. 2022, 98, 015209. [Google Scholar] [CrossRef]
- Phaijoo, G.R.; Gurung, D.B. Sensitivity analysis of SEIR-SEI model of dengue disease. Gams J. Math. Math. Biosci. 2018, 6, 41–50. [Google Scholar]
S.N. | Variable | Symbol | Value |
---|---|---|---|
1 | Birth rate | 0.04 | |
2 | Recovery rate | 24 | |
3 | Transmission rate | 123 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alazman, I.; Mishra, M.N.; Alkahtani, B.S.; Dubey, R.S. Analysis of Infection and Diffusion Coefficient in an SIR Model by Using Generalized Fractional Derivative. Fractal Fract. 2024, 8, 537. https://doi.org/10.3390/fractalfract8090537
Alazman I, Mishra MN, Alkahtani BS, Dubey RS. Analysis of Infection and Diffusion Coefficient in an SIR Model by Using Generalized Fractional Derivative. Fractal and Fractional. 2024; 8(9):537. https://doi.org/10.3390/fractalfract8090537
Chicago/Turabian StyleAlazman, Ibtehal, Manvendra Narayan Mishra, Badr Saad Alkahtani, and Ravi Shanker Dubey. 2024. "Analysis of Infection and Diffusion Coefficient in an SIR Model by Using Generalized Fractional Derivative" Fractal and Fractional 8, no. 9: 537. https://doi.org/10.3390/fractalfract8090537
APA StyleAlazman, I., Mishra, M. N., Alkahtani, B. S., & Dubey, R. S. (2024). Analysis of Infection and Diffusion Coefficient in an SIR Model by Using Generalized Fractional Derivative. Fractal and Fractional, 8(9), 537. https://doi.org/10.3390/fractalfract8090537