On New Generalized Hermite–Hadamard–Mercer-Type Inequalities for Raina Functions
Abstract
1. Introduction and Preliminaries
2. Main Results
- 1.
- If we choose and , then we have the inequality (8), which is the Hermite–Hadamard inequality for the Raina function.
- 2.
- If we choose , and , then we have the Hermite–Hadamard inequality for the Reimann–Liouville fractional integral operator as follows:
3. Further Generalized Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Breaz, D.; Yildiz, Ç.; Cotîrlă, L.I.; Rahman, G.; Yergöz, B. New Hadamard type inequalities for modified h-convex functions. Fractal Fract. 2023, 7, 216. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Sarikaya, M.Z. On generalized fractional integral inequalities for twice differentiable convex functions. J. Comput. Appl. Math. 2020, 372, 112740. [Google Scholar] [CrossRef]
- Rashid, S.; Butt, S.I.; Kanwal, S.; Ahmad, H.; Wang, M.K. Quantum integral inequalities with respect to Raina’s function via coordinated generalized ψ–convex functions with applications. J. Funct. Spaces 2021, 4, 6631474. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Butt, S.I.; Nadeem, M.; Qaisar, S.; Akdemir, A.O.; Abdeljawad, T. Hermite-Jensen-Mercer type inequalities for conformable integrals and related results. Adv. Differ. Equ. 2020, 2020, 501. [Google Scholar] [CrossRef]
- Ali, M.A.; Asjad, M.I.; Budak, H.; Faridi, W.A. On Ostrowski-Mercer inequalities for differentiable harmonically convex functions with applications. Math. Methods Appliedsci. 2023, 46, 8546–8559. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monographs; Victoria University: Wellington, New Zealand, 2000. [Google Scholar]
- Mitrinović, D.S. Analytic Inequalities; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1970. [Google Scholar]
- Dragomir, S.S.; Agarwal, R. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Kavurmaci, H.; Avci, M.; Özdemir, M.E. New inequalities of Hermite-Hadamard type for convex functions with applications. J. Inequal. Appl. 2011, 2011, 86. [Google Scholar] [CrossRef]
- Yildiz, Ç.; Özdemir, M.E. On generalized inequalities of Hermite-Hadamard type for convex functions. Int. Anal. Appl. 2017, 14, 52–63. [Google Scholar]
- Mercer, A.M. A variant of Jensen’s inequality. J. Inequal. Pure Appl. Math. 2003, 4, 73. [Google Scholar]
- Pavić, Z. The Jensen–Mercer inequality with infinite convex combinations. Math. Sci. Appl. E Notes 2019, 7, 19–27. [Google Scholar] [CrossRef]
- Kian, M.; Moslehian, M.S. Refinements of the operator Jensen-Mercer inequality. Electron. J. Linear Algebra 2013, 26, 742–753. [Google Scholar] [CrossRef]
- Khan, M.A.; Pecaric, J. New refinements of the Jensen-Mercer inequality associated to positive n-tuples. Armen. J. Math. 2020, 12, 1–12. [Google Scholar]
- Moradi, H.R.; Furuichi, S. Improvement and generalization of some Jensen-Mercer-type inequalities. J. Math. Inequal. 2020, 14, 377–383. [Google Scholar] [CrossRef]
- Ali, M.A.; Sitthiwirattham, T.; Köbis, E.; Hanif, A. Hermite-Hadamard-Mercer Inequalities Associated with Twice-Differentiable Functions with Applications. Axioms 2024, 13, 114. [Google Scholar] [CrossRef]
- Abbasi, M.; Morassaei, A.; Mirzapour, F. Jensen-Mercer Type Inequalities for Operator h-Convex Functions. Bull. Iran. Math. Soc. 2020, 48, 2441–2462. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Öğulmüş, H.; Sarıkaya, M.Z. Hermite-Hadamard-Mercer type inequalities for fractional integrals. Filomat 2021, 35, 2425–2436. [Google Scholar] [CrossRef]
- Ali, M.A.; Hussain, T.; Iqbal, M.Z.; Ejaz, F. Inequalities of Hermite-Hadamard-Mercer type for convex functions via k-fracttional integrals. Int. J. Math. Model. Comput. 2020, 10, 227–238. [Google Scholar]
- Butt, S.I.; Nasir, J.; Qaisar, S.; Abualnaja, K.M. k– Fractional variants of Hermite-Mercer-type inequalities via sNewYork:–convexity with applications. J. Funct. Spaces 2021, 8, 5566360. [Google Scholar] [CrossRef]
- Sitthiwirattham, T.; Vivas-Cortez, M.; Ali, M.A.; Budak, H.; Avcı, I. A study of fractional Hermite-Hadamard-Mercer inequalities for differentiable functions. Fractals 2024, 32, 2440016. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Awan, M.U.; Javed, M.Z.; Kashuri, A.; Noor, M.A.; Noor, K.I.; Vlora, A. Some new generalized k-fractional Hermite-Hadamard-Mercer type integral inequalities and their applications. AIMS Math. 2022, 7, 3203–3220. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Javed, M.Z.; Awan, M.U.; Noor, M.A.; Dragomir, S.S. Bullen-Mercer type inequalities with applications in numerical analysis. Alex. Eng. J. 2024, 96, 15–33. [Google Scholar] [CrossRef]
- Faisal, S.; Khan, M.A.; Iqbal, S. Generalized Hermite-Hadamard-Mercer type inequalities via majorization. Filomat 2022, 36, 469–483. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Hamed, Y.S.; Mohammed, P.O.; Kodamasingh, B.; Nonlaopon, K. New midpoint type Hermite-Hadamard-Mercer inequalities pertaining to Caputo-Fabrizio fractional operators. Alex. Eng. J. 2023, 65, 689–698. [Google Scholar] [CrossRef]
- Liu, J.B.; Butt, S.I.; Nasir, J.; Aslam, A.; Fahad, A.; Soontharanon, J. Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Math. 2022, 7, 2123–2141. [Google Scholar] [CrossRef]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
- Agarwal, R.P.; Luo, M.J.; Raina, R.K. On Ostrowski Type Inequalities. Fasc. Math. 2016, 56, 5–27. [Google Scholar] [CrossRef]
- Set, E.; Çelik, B.; Özdemir, M.E.; Aslan, M. Some New Results on Hermite-Hadamard-Mercer-Type Inequalities Using a General Family of Fractional Integral Operators. Fractal Fract. 2021, 5, 68. [Google Scholar] [CrossRef]
- Set, E.; Noor, M.A.; Awan, M.U.; Gözpinar, A. Generalized Hermite-Hadamard type inequalities involving fractional integral operators. J. Inequal. Appl. 2017, 169, 1–10. [Google Scholar] [CrossRef]
- Srivastava, H.M. A Survey of Some Recent Developments on Higher Transcendental Functions of Analytic Number Theory and Applied Mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
- Set, E.; Choi, J.; Gözpinar, A. Hermite-Hadamard type inequalities for the generalized k–fractional integral operators. J. Inequal. Appl. 2017, 2017, 206. [Google Scholar] [CrossRef] [PubMed]
- Butt, S.I.; Nadeem, M.; Tariq, M.; Aslam, A. New integral type inequalities via Raina-convex functions and its applications. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021, 70, 1011–1035. [Google Scholar] [CrossRef]
- Yaldiz, H.; Sarikaya, M.Z. On the Hermite-Hadamard type inequalities for fractional integral operator. Kragujev. J. Math. 2020, 44, 369–378. [Google Scholar] [CrossRef]
- Sarıkaya, M.Z.; Hüseyin, Y. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2017, 17, 1049–1059. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çiftci, Z.; Coşkun, M.; Yildiz, Ç.; Cotîrlă, L.-I.; Breaz, D. On New Generalized Hermite–Hadamard–Mercer-Type Inequalities for Raina Functions. Fractal Fract. 2024, 8, 472. https://doi.org/10.3390/fractalfract8080472
Çiftci Z, Coşkun M, Yildiz Ç, Cotîrlă L-I, Breaz D. On New Generalized Hermite–Hadamard–Mercer-Type Inequalities for Raina Functions. Fractal and Fractional. 2024; 8(8):472. https://doi.org/10.3390/fractalfract8080472
Chicago/Turabian StyleÇiftci, Zeynep, Merve Coşkun, Çetin Yildiz, Luminiţa-Ioana Cotîrlă, and Daniel Breaz. 2024. "On New Generalized Hermite–Hadamard–Mercer-Type Inequalities for Raina Functions" Fractal and Fractional 8, no. 8: 472. https://doi.org/10.3390/fractalfract8080472
APA StyleÇiftci, Z., Coşkun, M., Yildiz, Ç., Cotîrlă, L.-I., & Breaz, D. (2024). On New Generalized Hermite–Hadamard–Mercer-Type Inequalities for Raina Functions. Fractal and Fractional, 8(8), 472. https://doi.org/10.3390/fractalfract8080472